BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 19495451)

  • 1. A microfluidic chip for electrochemical conversions in drug metabolism studies.
    Odijk M; Baumann A; Lohmann W; van den Brink FT; Olthuis W; Karst U; van den Berg A
    Lab Chip; 2009 Jun; 9(12):1687-93. PubMed ID: 19495451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic platform for liquid chromatography-tandem mass spectrometry analyses of complex peptide mixtures.
    Xie J; Miao Y; Shih J; Tai YC; Lee TD
    Anal Chem; 2005 Nov; 77(21):6947-53. PubMed ID: 16255594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemistry-on-chip for on-line conversions in drug metabolism studies.
    Odijk M; Baumann A; Olthuis W; van den Berg A; Karst U
    Biosens Bioelectron; 2010 Dec; 26(4):1521-7. PubMed ID: 20728333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic chip platform with electrochemical carbon nanotube electrodes for pre-clinical evaluation of antibiotics nanocapsules.
    Hong CC; Wang CY; Peng KT; Chu IM
    Biosens Bioelectron; 2011 Apr; 26(8):3620-6. PubMed ID: 21377860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-line coupling of a microelectrode array equipped poly(dimethylsiloxane) microchip with an integrated graphite electrospray emitter for electrospray ionisation mass spectrometry.
    Liljegren G; Dahlin A; Zettersten C; Bergquist J; Nyholm L
    Lab Chip; 2005 Oct; 5(10):1008-16. PubMed ID: 16175254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved conversion rates in drug screening applications using miniaturized electrochemical cells with frit channels.
    Odijk M; Olthuis W; van den Berg A; Qiao L; Girault H
    Anal Chem; 2012 Nov; 84(21):9176-83. PubMed ID: 23020795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An electrochemical pumping system for on-chip gradient generation.
    Xie J; Miao Y; Shih J; He Q; Liu J; Tai YC; Lee TD
    Anal Chem; 2004 Jul; 76(13):3756-63. PubMed ID: 15228351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic chip-based liquid chromatography coupled to mass spectrometry for determination of small molecules in bioanalytical applications.
    Lin SL; Bai HY; Lin TY; Fuh MR
    Electrophoresis; 2012 Feb; 33(4):635-43. PubMed ID: 22451056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microchip reversed-phase liquid chromatography with packed column and electrochemical flow cell using polystyrene/poly(dimethylsiloxane).
    Ishida A; Natsume M; Kamidate T
    J Chromatogr A; 2008 Dec; 1213(2):209-17. PubMed ID: 18992887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent protein modification by reactive drug metabolites using online electrochemistry/liquid chromatography/mass spectrometry.
    Lohmann W; Hayen H; Karst U
    Anal Chem; 2008 Dec; 80(24):9714-9. PubMed ID: 19006340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical techniques for microfluidic applications.
    Sassa F; Morimoto K; Satoh W; Suzuki H
    Electrophoresis; 2008 May; 29(9):1787-800. PubMed ID: 18384068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection.
    Karuwan C; Wisitsoraat A; Maturos T; Phokharatkul D; Sappat A; Jaruwongrungsee K; Lomas T; Tuantranont A
    Talanta; 2009 Sep; 79(4):995-1000. PubMed ID: 19615498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves.
    Han Z; Li W; Huang Y; Zheng B
    Anal Chem; 2009 Jul; 81(14):5840-5. PubMed ID: 19518139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic studies of tetrazepam based on electrochemical simulation in comparison to in vivo and in vitro methods.
    Baumann A; Lohmann W; Schubert B; Oberacher H; Karst U
    J Chromatogr A; 2009 Apr; 1216(15):3192-8. PubMed ID: 19233363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass spectrometric detection of short-lived drug metabolites generated in an electrochemical microfluidic chip.
    van den Brink FT; Büter L; Odijk M; Olthuis W; Karst U; van den Berg A
    Anal Chem; 2015 Feb; 87(3):1527-35. PubMed ID: 25531627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic chip-based online electrochemical detecting system for continuous and simultaneous monitoring of ascorbate and Mg2+ in rat brain.
    Gao X; Yu P; Wang Y; Ohsaka T; Ye J; Mao L
    Anal Chem; 2013 Aug; 85(15):7599-605. PubMed ID: 23834330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cocktail of metabolic probes demonstrates the relevance of primary human hepatocyte cultures in a microfluidic biochip for pharmaceutical drug screening.
    Prot JM; Videau O; Brochot C; Legallais C; Bénech H; Leclerc E
    Int J Pharm; 2011 Apr; 408(1-2):67-75. PubMed ID: 21295126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic cell culture and metabolism detection with electrospray ionization quadrupole time-of-flight mass spectrometer.
    Gao D; Wei H; Guo GS; Lin JM
    Anal Chem; 2010 Jul; 82(13):5679-85. PubMed ID: 20540506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential pH measurements of metabolic cellular activity in nl culture volumes using microfabricated iridium oxide electrodes.
    Ges IA; Ivanov BL; Werdich AA; Baudenbacher FJ
    Biosens Bioelectron; 2007 Feb; 22(7):1303-10. PubMed ID: 16860556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.