These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 19495458)

  • 1. Engineering microscale cellular niches for three-dimensional multicellular co-cultures.
    Huang CP; Lu J; Seon H; Lee AP; Flanagan LA; Kim HY; Putnam AJ; Jeon NL
    Lab Chip; 2009 Jun; 9(12):1740-8. PubMed ID: 19495458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogel-based microfluidic systems for co-culture of cells.
    Chen MC; Gupta M; Cheung KC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4848-51. PubMed ID: 19163802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contact guidance diversity in rotationally aligned collagen matrices.
    Nuhn JAM; Perez AM; Schneider IC
    Acta Biomater; 2018 Jan; 66():248-257. PubMed ID: 29196116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Native extracellular matrix-derived semipermeable, optically transparent, and inexpensive membrane inserts for microfluidic cell culture.
    Mondrinos MJ; Yi YS; Wu NK; Ding X; Huh D
    Lab Chip; 2017 Sep; 17(18):3146-3158. PubMed ID: 28809418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients.
    Baker BM; Trappmann B; Stapleton SC; Toro E; Chen CS
    Lab Chip; 2013 Aug; 13(16):3246-52. PubMed ID: 23787488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobic Patterning-Based 3D Microfluidic Cell Culture Assay.
    Han S; Kim J; Li R; Ma A; Kwan V; Luong K; Sohn LL
    Adv Healthc Mater; 2018 Jun; 7(12):e1800122. PubMed ID: 29700986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three dimensional multicellular co-cultures and anti-cancer drug assays in rapid prototyped multilevel microfluidic devices.
    Hwang H; Park J; Shin C; Do Y; Cho YK
    Biomed Microdevices; 2013 Aug; 15(4):627-634. PubMed ID: 23232700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions.
    Humayun M; Chow CW; Young EWK
    Lab Chip; 2018 May; 18(9):1298-1309. PubMed ID: 29651473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterning microscale extracellular matrices to study endothelial and cancer cell interactions in vitro.
    Dickinson LE; Lütgebaucks C; Lewis DM; Gerecht S
    Lab Chip; 2012 Nov; 12(21):4244-8. PubMed ID: 22992844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enabling screening in 3D microenvironments: probing matrix and stromal effects on the morphology and proliferation of T47D breast carcinoma cells.
    Montanez-Sauri SI; Sung KE; Berthier E; Beebe DJ
    Integr Biol (Camb); 2013 Mar; 5(3):631-40. PubMed ID: 23340769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rapid biofabrication technique for self-assembled collagen-based multicellular and heterogeneous 3D tissue constructs.
    Shahin-Shamsabadi A; Selvaganapathy PR
    Acta Biomater; 2019 Jul; 92():172-183. PubMed ID: 31085365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtissue size and cell-cell communication modulate cell migration in arrayed 3D collagen gels.
    Nuhn JAM; Gong S; Che X; Que L; Schneider IC
    Biomed Microdevices; 2018 Jul; 20(3):62. PubMed ID: 30062494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions.
    Chen MB; Srigunapalan S; Wheeler AR; Simmons CA
    Lab Chip; 2013 Jul; 13(13):2591-8. PubMed ID: 23525275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-engineered microenvironment systems for modeling human vasculature.
    Tourovskaia A; Fauver M; Kramer G; Simonson S; Neumann T
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1264-71. PubMed ID: 25030480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro modeling of solid tumor interactions with perfused blood vessels.
    Kwak TJ; Lee E
    Sci Rep; 2020 Nov; 10(1):20142. PubMed ID: 33214583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic patterning of cells in extracellular matrix biopolymers: effects of channel size, cell type, and matrix composition on pattern integrity.
    Tan W; Desai TA
    Tissue Eng; 2003 Apr; 9(2):255-67. PubMed ID: 12740088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A versatile valve-enabled microfluidic cell co-culture platform and demonstration of its applications to neurobiology and cancer biology.
    Gao Y; Majumdar D; Jovanovic B; Shaifer C; Lin PC; Zijlstra A; Webb DJ; Li D
    Biomed Microdevices; 2011 Jun; 13(3):539-48. PubMed ID: 21424383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Microfluidic 3D Cytotoxicity Assay for Cancer Immunotherapy (CACI-IMPACT Platform).
    Park D; Son K; Hwang Y; Ko J; Lee Y; Doh J; Jeon NL
    Front Immunol; 2019; 10():1133. PubMed ID: 31191524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device.
    Liu T; Lin B; Qin J
    Lab Chip; 2010 Jul; 10(13):1671-7. PubMed ID: 20414488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.