These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 19495673)

  • 1. [Mechanisms of electrical defibrillation].
    Reek S; Ideker RE
    Herzschrittmacherther Elektrophysiol; 1997 Mar; 8(1):4-14. PubMed ID: 19495673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epicardial sock mapping following monophasic and biphasic shocks of equal voltage with an endocardial lead system.
    Usui M; Callihan RL; Walker RG; Walcott GP; Rollins DL; Wolf PD; Smith WM; Ideker RE
    J Cardiovasc Electrophysiol; 1996 Apr; 7(4):322-34. PubMed ID: 8777480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of relatively refractory canine myocardium to monophasic and biphasic shocks.
    Daubert JP; Frazier DW; Wolf PD; Franz MR; Smith WM; Ideker RE
    Circulation; 1991 Dec; 84(6):2522-38. PubMed ID: 1959202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of defibrillation. Critical points and the upper limit of vulnerability.
    Walcott GP; Walcott KT; Ideker RE
    J Electrocardiol; 1995; 28 Suppl():1-6. PubMed ID: 8656095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs.
    Zhou X; Daubert JP; Wolf PD; Smith WM; Ideker RE
    Circ Res; 1993 Jan; 72(1):145-60. PubMed ID: 8417837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure.
    Efimov IR; Cheng Y; Van Wagoner DR; Mazgalev T; Tchou PJ
    Circ Res; 1998 May; 82(8):918-25. PubMed ID: 9576111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upper limit of vulnerability is a good estimator of shock strength associated with 90% probability of successful defibrillation in humans with transvenous implantable cardioverter-defibrillators.
    Swerdlow CD; Ahern T; Kass RM; Davie S; Mandel WJ; Chen PS
    J Am Coll Cardiol; 1996 Apr; 27(5):1112-8. PubMed ID: 8609329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal cardioversion of atrial fibrillation in sheep.
    Cooper RA; Alferness CA; Smith WM; Ideker RE
    Circulation; 1993 May; 87(5):1673-86. PubMed ID: 8491023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reentry site during fibrillation induction in relation to defibrillation efficacy for different shock waveforms.
    Ideker RE; Alferness C; Melnick S; Sreenan KM; Johnson E; Smith WM
    J Cardiovasc Electrophysiol; 2001 May; 12(5):581-91. PubMed ID: 11386521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation of atrial refractoriness to upper and lower limits of vulnerability for atrial fibrillation/flutter following implantable ventricular defibrillator shocks.
    Katz A; Sweeney RJ; Gill RM; Reid PR; Prystowsky EN
    Circulation; 1999 Sep; 100(10):1125-30. PubMed ID: 10477539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced arrhythmogenicity of biphasic versus monophasic T-wave shocks. Implications for defibrillation efficacy.
    Behrens S; Li C; Kirchhof P; Fabritz FL; Franz MR
    Circulation; 1996 Oct; 94(8):1974-80. PubMed ID: 8873676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of electrical defibrillation: impact of new experimental defibrillator waveforms.
    Blanchard SM; Ideker RE
    Am Heart J; 1994 Apr; 127(4 Pt 2):970-7. PubMed ID: 8160601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transthoracic biphasic waveform defibrillation at very high and very low energies: a comparison with monophasic waveforms in an animal model of ventricular fibrillation.
    Clark CB; Zhang Y; Davies LR; Karlsson G; Kerber RE
    Resuscitation; 2002 Aug; 54(2):183-6. PubMed ID: 12161298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of cardiac defibrillation in open-chest dogs with unipolar DC-coupled simultaneous activation and shock potential recordings.
    Witkowski FX; Penkoske PA; Plonsey R
    Circulation; 1990 Jul; 82(1):244-60. PubMed ID: 2364513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transthoracic defibrillation of short-lasting ventricular fibrillation: a randomised trial for comparison of the efficacy of low-energy biphasic rectilinear and monophasic damped sine shocks.
    Szili-Torok T; Theuns D; Verblaauw T; Scholten M; Kimman GJ; Res J; Jordaens L
    Acta Cardiol; 2002 Oct; 57(5):329-34. PubMed ID: 12405569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Threshold reduction with biphasic defibrillator waveforms. Role of charge balance.
    Jones JL; Tovar OH
    J Electrocardiol; 1995; 28 Suppl():25-30. PubMed ID: 8656123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Truncated biphasic pulses for transthoracic defibrillation.
    Bardy GH; Gliner BE; Kudenchuk PJ; Poole JE; Dolack GL; Jones GK; Anderson J; Troutman C; Johnson G
    Circulation; 1995 Mar; 91(6):1768-74. PubMed ID: 7882486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of monophasic and biphasic shocks on action potentials during ventricular fibrillation in dogs.
    Zhou X; Wolf PD; Rollins DL; Afework Y; Smith WM; Ideker RE
    Circ Res; 1993 Aug; 73(2):325-34. PubMed ID: 8330375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy levels for defibrillation: what is of real clinical importance?
    Fotuhi PC; Epstein AE; Ideker RE
    Am J Cardiol; 1999 Mar; 83(5B):24D-33D. PubMed ID: 10089836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biphasic and monophasic shocks for transthoracic defibrillation: a meta analysis of randomised controlled trials.
    Faddy SC; Powell J; Craig JC
    Resuscitation; 2003 Jul; 58(1):9-16. PubMed ID: 12867304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.