These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 19495687)

  • 1. Therapeutic applications of RNAi for silencing virus replication.
    Tripp RA; Tompkins SM
    Methods Mol Biol; 2009; 555():43-61. PubMed ID: 19495687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective inhibition of hepatitis B virus replication by small interfering RNAs expressed from human foamy virus vectors.
    Sun Y; Li Z; Li L; Li J; Liu X; Li W
    Int J Mol Med; 2007 Apr; 19(4):705-11. PubMed ID: 17334648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials.
    DeVincenzo JP
    Early Hum Dev; 2009 Oct; 85(10 Suppl):S31-5. PubMed ID: 19833462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs.
    Aigner A
    J Biotechnol; 2006 Jun; 124(1):12-25. PubMed ID: 16413079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of HIV-1 replication by RNA interference.
    Lee NS; Rossi JJ
    Virus Res; 2004 Jun; 102(1):53-8. PubMed ID: 15068880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The silent treatment: RNAi as a defense against virus infection in mammals.
    van Rij RP; Andino R
    Trends Biotechnol; 2006 Apr; 24(4):186-93. PubMed ID: 16503061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi).
    Pan Q; Ramakrishnaiah V; Henry S; Fouraschen S; de Ruiter PE; Kwekkeboom J; Tilanus HW; Janssen HL; van der Laan LJ
    Gut; 2012 Sep; 61(9):1330-9. PubMed ID: 22198713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of inhibitory efficacy of short interfering RNAs targeting different genes on Measles virus replication.
    Shi J; Wang M; Wang J; Wang S; Luo E
    J Basic Microbiol; 2012 Jun; 52(3):332-9. PubMed ID: 22052457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA interference strategies as therapy for respiratory viral infections.
    DeVincenzo JP
    Pediatr Infect Dis J; 2008 Oct; 27(10 Suppl):S118-22. PubMed ID: 18820571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity.
    Akhtar S; Benter I
    Adv Drug Deliv Rev; 2007 Mar; 59(2-3):164-82. PubMed ID: 17481774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA interference (RNAi) in hematology.
    Scherr M; Steinmann D; Eder M
    Ann Hematol; 2004 Jan; 83(1):1-8. PubMed ID: 14574462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiviral applications of RNAi.
    Morris KV; Rossi JJ
    Curr Opin Mol Ther; 2006 Apr; 8(2):115-21. PubMed ID: 16610763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing RNA interference for the treatment of viral infections.
    Arbuthnot P
    Drug News Perspect; 2010; 23(6):341-50. PubMed ID: 20697601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonviral in vivo delivery of therapeutic small interfering RNAs.
    Aigner A
    Curr Opin Mol Ther; 2007 Aug; 9(4):345-52. PubMed ID: 17694447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local and systemic delivery of siRNAs for oligonucleotide therapy.
    Takeshita F; Hokaiwado N; Honma K; Banas A; Ochiya T
    Methods Mol Biol; 2009; 487():83-92. PubMed ID: 19301643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A potential therapeutic for pandemic influenza using RNA interference.
    Seth S; Templin MV; Severson G; Baturevych O
    Methods Mol Biol; 2010; 623():397-422. PubMed ID: 20217566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of HIV-1 fusion with small interfering RNAs targeting the chemokine coreceptor CXCR4.
    Zhou N; Fang J; Mukhtar M; Acheampong E; Pomerantz RJ
    Gene Ther; 2004 Dec; 11(23):1703-12. PubMed ID: 15306840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of adenovirus infections by siRNA-mediated silencing of early and late adenoviral gene functions.
    Eckstein A; Grössl T; Geisler A; Wang X; Pinkert S; Pozzuto T; Schwer C; Kurreck J; Weger S; Vetter R; Poller W; Fechner H
    Antiviral Res; 2010 Oct; 88(1):86-94. PubMed ID: 20708037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Choice of the adequate detection time for the accurate evaluation of the efficiency of siRNA-induced gene silencing.
    Choi I; Cho BR; Kim D; Miyagawa S; Kubo T; Kim JY; Park CG; Hwang WS; Lee JS; Ahn C
    J Biotechnol; 2005 Nov; 120(3):251-61. PubMed ID: 16095743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing.
    Bartlett DW; Davis ME
    Biotechnol Bioeng; 2007 Jul; 97(4):909-21. PubMed ID: 17154307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.