BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

837 related articles for article (PubMed ID: 19495733)

  • 1. Intermodal attention affects the processing of the temporal alignment of audiovisual stimuli.
    Talsma D; Senkowski D; Woldorff MG
    Exp Brain Res; 2009 Sep; 198(2-3):313-28. PubMed ID: 19495733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Good times for multisensory integration: Effects of the precision of temporal synchrony as revealed by gamma-band oscillations.
    Senkowski D; Talsma D; Grigutsch M; Herrmann CS; Woldorff MG
    Neuropsychologia; 2007 Feb; 45(3):561-71. PubMed ID: 16542688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of temporal asynchrony on multisensory integration in the processing of asynchronous audio-visual stimuli of real-world events: an event-related potential study.
    Liu B; Jin Z; Wang Z; Gong C
    Neuroscience; 2011 Mar; 176():254-64. PubMed ID: 21185358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermodal selective attention. I. Effects on event-related potentials to lateralized auditory and visual stimuli.
    Woods DL; Alho K; Algazi A
    Electroencephalogr Clin Neurophysiol; 1992 May; 82(5):341-55. PubMed ID: 1374703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective attention and multisensory integration: multiple phases of effects on the evoked brain activity.
    Talsma D; Woldorff MG
    J Cogn Neurosci; 2005 Jul; 17(7):1098-114. PubMed ID: 16102239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multisensory processing and oscillatory gamma responses: effects of spatial selective attention.
    Senkowski D; Talsma D; Herrmann CS; Woldorff MG
    Exp Brain Res; 2005 Oct; 166(3-4):411-26. PubMed ID: 16151775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early auditory change detection implicitly facilitated by ignored concurrent visual change during a Braille reading task.
    Aoyama A; Haruyama T; Kuriki S
    J Integr Neurosci; 2013 Sep; 12(3):385-99. PubMed ID: 24070061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse effectiveness and multisensory interactions in visual event-related potentials with audiovisual speech.
    Stevenson RA; Bushmakin M; Kim S; Wallace MT; Puce A; James TW
    Brain Topogr; 2012 Jul; 25(3):308-26. PubMed ID: 22367585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multisensory interactions elicited by audiovisual stimuli presented peripherally in a visual attention task: a behavioral and event-related potential study in humans.
    Wu J; Li Q; Bai O; Touge T
    J Clin Neurophysiol; 2009 Dec; 26(6):407-13. PubMed ID: 19952565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multisensory interactions in early evoked brain activity follow the principle of inverse effectiveness.
    Senkowski D; Saint-Amour D; Höfle M; Foxe JJ
    Neuroimage; 2011 Jun; 56(4):2200-8. PubMed ID: 21497200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing Electrophysiological Indices of Perceptual Awareness across Unisensory and Multisensory Modalities.
    Noel JP; Simon D; Thelen A; Maier A; Blake R; Wallace MT
    J Cogn Neurosci; 2018 Jun; 30(6):814-828. PubMed ID: 29488853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Being First Matters: Topographical Representational Similarity Analysis of ERP Signals Reveals Separate Networks for Audiovisual Temporal Binding Depending on the Leading Sense.
    Cecere R; Gross J; Willis A; Thut G
    J Neurosci; 2017 May; 37(21):5274-5287. PubMed ID: 28450537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human amygdala response to unisensory and multisensory emotion input: No evidence for superadditivity from intracranial recordings.
    Domínguez-Borràs J; Guex R; Méndez-Bértolo C; Legendre G; Spinelli L; Moratti S; Frühholz S; Mégevand P; Arnal L; Strange B; Seeck M; Vuilleumier P
    Neuropsychologia; 2019 Aug; 131():9-24. PubMed ID: 31158367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spread of attention across modalities and space in a multisensory object.
    Busse L; Roberts KC; Crist RE; Weissman DH; Woldorff MG
    Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18751-6. PubMed ID: 16339900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological correlates of individual differences in perception of audiovisual temporal asynchrony.
    Kaganovich N; Schumaker J
    Neuropsychologia; 2016 Jun; 86():119-30. PubMed ID: 27094850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disentangling unisensory and multisensory components in audiovisual integration using a novel multifrequency fMRI spectral analysis.
    Hertz U; Amedi A
    Neuroimage; 2010 Aug; 52(2):617-32. PubMed ID: 20412861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Top-down and bottom-up modulation in processing bimodal face/voice stimuli.
    Latinus M; VanRullen R; Taylor MJ
    BMC Neurosci; 2010 Mar; 11():36. PubMed ID: 20222946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in the neural basis of automatic auditory and visual time perception: ERP evidence from an across-modal delayed response oddball task.
    Chen Y; Huang X; Luo Y; Peng C; Liu C
    Brain Res; 2010 Apr; 1325():100-11. PubMed ID: 20170647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual stimulus locking of EEG is modulated by temporal congruency of auditory stimuli.
    Schall S; Quigley C; Onat S; König P
    Exp Brain Res; 2009 Sep; 198(2-3):137-51. PubMed ID: 19526359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crossmodal and intermodal attention modulate event-related brain potentials to tactile and auditory stimuli.
    Hötting K; Rösler F; Röder B
    Exp Brain Res; 2003 Jan; 148(1):26-37. PubMed ID: 12478394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.