These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 19495994)
1. Lessons for fragment library design: analysis of output from multiple screening campaigns. Chen IJ; Hubbard RE J Comput Aided Mol Des; 2009 Aug; 23(8):603-20. PubMed ID: 19495994 [TBL] [Abstract][Full Text] [Related]
2. Design of compound libraries for fragment screening. Blomberg N; Cosgrove DA; Kenny PW; Kolmodin K J Comput Aided Mol Des; 2009 Aug; 23(8):513-25. PubMed ID: 19283339 [TBL] [Abstract][Full Text] [Related]
3. Ligand specificity, privileged substructures and protein druggability from fragment-based screening. Barelier S; Krimm I Curr Opin Chem Biol; 2011 Aug; 15(4):469-74. PubMed ID: 21411360 [TBL] [Abstract][Full Text] [Related]
4. Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation. Loving K; Salam NK; Sherman W J Comput Aided Mol Des; 2009 Aug; 23(8):541-54. PubMed ID: 19421721 [TBL] [Abstract][Full Text] [Related]
5. Fragment Hits: What do They Look Like and How do They Bind? Giordanetto F; Jin C; Willmore L; Feher M; Shaw DE J Med Chem; 2019 Apr; 62(7):3381-3394. PubMed ID: 30875465 [TBL] [Abstract][Full Text] [Related]
6. Using fragment-based technologies to target protein-protein interactions. Bower JF; Pannifer A Curr Pharm Des; 2012; 18(30):4685-96. PubMed ID: 22650253 [TBL] [Abstract][Full Text] [Related]
7. General Theory of Fragment Linking in Molecular Design: Why Fragment Linking Rarely Succeeds and How to Improve Outcomes. Yu HS; Modugula K; Ichihara O; Kramschuster K; Keng S; Abel R; Wang L J Chem Theory Comput; 2021 Jan; 17(1):450-462. PubMed ID: 33372778 [TBL] [Abstract][Full Text] [Related]
8. Virtual fragment screening: an exploration of various docking and scoring protocols for fragments using Glide. Kawatkar S; Wang H; Czerminski R; Joseph-McCarthy D J Comput Aided Mol Des; 2009 Aug; 23(8):527-39. PubMed ID: 19495993 [TBL] [Abstract][Full Text] [Related]
9. Development and NMR validation of minimal pharmacophore hypotheses for the generation of fragment libraries enriched in heparanase inhibitors. Gozalbes R; Mosulén S; Carbajo RJ; Pineda-Lucena A J Comput Aided Mol Des; 2009 Aug; 23(8):555-69. PubMed ID: 19421720 [TBL] [Abstract][Full Text] [Related]
10. Design of a multi-purpose fragment screening library using molecular complexity and orthogonal diversity metrics. Lau WF; Withka JM; Hepworth D; Magee TV; Du YJ; Bakken GA; Miller MD; Hendsch ZS; Thanabal V; Kolodziej SA; Xing L; Hu Q; Narasimhan LS; Love R; Charlton ME; Hughes S; van Hoorn WP; Mills JE J Comput Aided Mol Des; 2011 Jul; 25(7):621-36. PubMed ID: 21604056 [TBL] [Abstract][Full Text] [Related]
11. Development and Validation of 2D Difference Intensity Analysis for Chemical Library Screening by Protein-Detected NMR Spectroscopy. Egner JM; Jensen DR; Olp MD; Kennedy NW; Volkman BF; Peterson FC; Smith BC; Hill RB Chembiochem; 2018 Mar; 19(5):448-458. PubMed ID: 29239081 [TBL] [Abstract][Full Text] [Related]
12. Fragment-based lead generation: identification of seed fragments by a highly efficient fragment screening technology. Neumann L; Ritscher A; Müller G; Hafenbradl D J Comput Aided Mol Des; 2009 Aug; 23(8):501-11. PubMed ID: 19533372 [TBL] [Abstract][Full Text] [Related]
13. Binding site druggability assessment in fragment-based drug design. Zhou Y; Huang N Methods Mol Biol; 2015; 1289():13-21. PubMed ID: 25709029 [TBL] [Abstract][Full Text] [Related]
14. Covalent fragment-based drug discovery for target tractability. McCarthy WJ; van der Zouwen AJ; Bush JT; Rittinger K Curr Opin Struct Biol; 2024 Jun; 86():102809. PubMed ID: 38554479 [TBL] [Abstract][Full Text] [Related]
15. Efficiency of hit generation and structural characterization in fragment-based ligand discovery. Larsson A; Jansson A; Åberg A; Nordlund P Curr Opin Chem Biol; 2011 Aug; 15(4):482-8. PubMed ID: 21724447 [TBL] [Abstract][Full Text] [Related]
16. Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery. Williams G; Ferenczy GG; Ulander J; Keserű GM Drug Discov Today; 2017 Apr; 22(4):681-689. PubMed ID: 27916639 [TBL] [Abstract][Full Text] [Related]
18. F2X-Universal and F2X-Entry: Structurally Diverse Compound Libraries for Crystallographic Fragment Screening. Wollenhaupt J; Metz A; Barthel T; Lima GMA; Heine A; Mueller U; Klebe G; Weiss MS Structure; 2020 Jun; 28(6):694-706.e5. PubMed ID: 32413289 [TBL] [Abstract][Full Text] [Related]
19. Fragment-based drug design: computational & experimental state of the art. Hoffer L; Renaud JP; Horvath D Comb Chem High Throughput Screen; 2011 Jul; 14(6):500-20. PubMed ID: 21521152 [TBL] [Abstract][Full Text] [Related]
20. Hybrid Screening Approach for Very Small Fragments: X-ray and Computational Screening on FKBP51. Draxler SW; Bauer M; Eickmeier C; Nadal S; Nar H; Rangel Rojas D; Seeliger D; Zeeb M; Fiegen D J Med Chem; 2020 Jun; 63(11):5856-5864. PubMed ID: 32420743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]