BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 19495994)

  • 1. Lessons for fragment library design: analysis of output from multiple screening campaigns.
    Chen IJ; Hubbard RE
    J Comput Aided Mol Des; 2009 Aug; 23(8):603-20. PubMed ID: 19495994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of compound libraries for fragment screening.
    Blomberg N; Cosgrove DA; Kenny PW; Kolmodin K
    J Comput Aided Mol Des; 2009 Aug; 23(8):513-25. PubMed ID: 19283339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand specificity, privileged substructures and protein druggability from fragment-based screening.
    Barelier S; Krimm I
    Curr Opin Chem Biol; 2011 Aug; 15(4):469-74. PubMed ID: 21411360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation.
    Loving K; Salam NK; Sherman W
    J Comput Aided Mol Des; 2009 Aug; 23(8):541-54. PubMed ID: 19421721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragment Hits: What do They Look Like and How do They Bind?
    Giordanetto F; Jin C; Willmore L; Feher M; Shaw DE
    J Med Chem; 2019 Apr; 62(7):3381-3394. PubMed ID: 30875465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using fragment-based technologies to target protein-protein interactions.
    Bower JF; Pannifer A
    Curr Pharm Des; 2012; 18(30):4685-96. PubMed ID: 22650253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General Theory of Fragment Linking in Molecular Design: Why Fragment Linking Rarely Succeeds and How to Improve Outcomes.
    Yu HS; Modugula K; Ichihara O; Kramschuster K; Keng S; Abel R; Wang L
    J Chem Theory Comput; 2021 Jan; 17(1):450-462. PubMed ID: 33372778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual fragment screening: an exploration of various docking and scoring protocols for fragments using Glide.
    Kawatkar S; Wang H; Czerminski R; Joseph-McCarthy D
    J Comput Aided Mol Des; 2009 Aug; 23(8):527-39. PubMed ID: 19495993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and NMR validation of minimal pharmacophore hypotheses for the generation of fragment libraries enriched in heparanase inhibitors.
    Gozalbes R; Mosulén S; Carbajo RJ; Pineda-Lucena A
    J Comput Aided Mol Des; 2009 Aug; 23(8):555-69. PubMed ID: 19421720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a multi-purpose fragment screening library using molecular complexity and orthogonal diversity metrics.
    Lau WF; Withka JM; Hepworth D; Magee TV; Du YJ; Bakken GA; Miller MD; Hendsch ZS; Thanabal V; Kolodziej SA; Xing L; Hu Q; Narasimhan LS; Love R; Charlton ME; Hughes S; van Hoorn WP; Mills JE
    J Comput Aided Mol Des; 2011 Jul; 25(7):621-36. PubMed ID: 21604056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and Validation of 2D Difference Intensity Analysis for Chemical Library Screening by Protein-Detected NMR Spectroscopy.
    Egner JM; Jensen DR; Olp MD; Kennedy NW; Volkman BF; Peterson FC; Smith BC; Hill RB
    Chembiochem; 2018 Mar; 19(5):448-458. PubMed ID: 29239081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragment-based lead generation: identification of seed fragments by a highly efficient fragment screening technology.
    Neumann L; Ritscher A; Müller G; Hafenbradl D
    J Comput Aided Mol Des; 2009 Aug; 23(8):501-11. PubMed ID: 19533372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding site druggability assessment in fragment-based drug design.
    Zhou Y; Huang N
    Methods Mol Biol; 2015; 1289():13-21. PubMed ID: 25709029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent fragment-based drug discovery for target tractability.
    McCarthy WJ; van der Zouwen AJ; Bush JT; Rittinger K
    Curr Opin Struct Biol; 2024 Jun; 86():102809. PubMed ID: 38554479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency of hit generation and structural characterization in fragment-based ligand discovery.
    Larsson A; Jansson A; Åberg A; Nordlund P
    Curr Opin Chem Biol; 2011 Aug; 15(4):482-8. PubMed ID: 21724447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery.
    Williams G; Ferenczy GG; Ulander J; Keserű GM
    Drug Discov Today; 2017 Apr; 22(4):681-689. PubMed ID: 27916639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding-site assessment by virtual fragment screening.
    Huang N; Jacobson MP
    PLoS One; 2010 Apr; 5(4):e10109. PubMed ID: 20404926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. F2X-Universal and F2X-Entry: Structurally Diverse Compound Libraries for Crystallographic Fragment Screening.
    Wollenhaupt J; Metz A; Barthel T; Lima GMA; Heine A; Mueller U; Klebe G; Weiss MS
    Structure; 2020 Jun; 28(6):694-706.e5. PubMed ID: 32413289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fragment-based drug design: computational & experimental state of the art.
    Hoffer L; Renaud JP; Horvath D
    Comb Chem High Throughput Screen; 2011 Jul; 14(6):500-20. PubMed ID: 21521152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of fragment screening methods on the p38α kinase: new methods, new insights.
    Pollack SJ; Beyer KS; Lock C; Müller I; Sheppard D; Lipkin M; Hardick D; Blurton P; Leonard PM; Hubbard PA; Todd D; Richardson CM; Ahrens T; Baader M; Hafenbradl DO; Hilyard K; Bürli RW
    J Comput Aided Mol Des; 2011 Jul; 25(7):677-87. PubMed ID: 21732248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.