These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 19496105)

  • 1. Enhancement of the hydrolysis activity of F0F1-ATPases using 60 Hz magnetic fields.
    Chen C; Cui Y; Yue J; Huo X; Song T
    Bioelectromagnetics; 2009 Dec; 30(8):663-8. PubMed ID: 19496105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effects of extremely low frequency magnetic fields on hydrolysis of F0F1-ATPases and their relationship with turnover rates of F1].
    Chen CF; Cui YB; Yue JC
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2008 Jun; 26(6):327-31. PubMed ID: 18771613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting proton flux across chromatophores driven by F0F1-ATPase using N-(fluorescein-5-thiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, triethylammonium salt.
    Yuanbo C; Fan Z; Jiachang Y
    Anal Biochem; 2005 Sep; 344(1):102-7. PubMed ID: 16043113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically driven proton conduction in single delta-free F0F1-ATPase.
    Xiaolong L; Xiaoai Z; Yuanbo C; Jiachang Y; Zhiyong L; Peidong J
    Biochem Biophys Res Commun; 2006 Sep; 347(3):752-7. PubMed ID: 16844089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extremely-low-frequency magnetic fields disrupt rhythmic slow activity in rat hippocampal slices.
    Bawin SM; Satmary WM; Jones RA; Adey WR; Zimmerman G
    Bioelectromagnetics; 1996; 17(5):388-95. PubMed ID: 8915548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of co-exposure to extremely low frequency (50 Hz) magnetic fields and xenobiotics determined in vitro by the alkaline comet assay.
    Villarini M; Moretti M; Scassellati-Sforzolini G; Boccioli B; Pasquini R
    Sci Total Environ; 2006 May; 361(1-3):208-19. PubMed ID: 15979690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NTP Toxicity Studies of 60-Hz Magnetic Fields Administered by Whole Body Exposure to F344/N Rats, Sprague-Dawley Rats, and B6C3F1 Mice.
    Toxic Rep Ser; 1996 Sep; 58():1-B6. PubMed ID: 11986681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using giant unilamellar lipid vesicle micro-patterns as ultrasmall reaction containers to observe reversible ATP synthesis/hydrolysis of F0F1-ATPase directly.
    Liu X; Zhao R; Zhang Y; Jiang X; Yue J; Jiang P; Zhang Z
    Biochim Biophys Acta; 2007 Dec; 1770(12):1620-6. PubMed ID: 17913367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ELF magnetic fields increase amino acid uptake into Vicia faba L. roots and alter ion movement across the plasma membrane.
    Stange BC; Rowland RE; Rapley BI; Podd JV
    Bioelectromagnetics; 2002 Jul; 23(5):347-54. PubMed ID: 12111755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 60 Hz magnetic fields and central cholinergic activity: effects of exposure intensity and duration.
    Lai H; Carino M
    Bioelectromagnetics; 1999; 20(5):284-9. PubMed ID: 10407513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of extremely low frequency magnetic fields on intracellular free calcium in HepG2 cells].
    Yang W; Xu T; Huo XL; Song T
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2003 Oct; 21(5):332-4. PubMed ID: 14761392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weak extremely-low-frequency magnetic field-induced regeneration anomalies in the planarian Dugesia tigrina.
    Jenrow KA; Smith CH; Liboff AR
    Bioelectromagnetics; 1996; 17(6):467-74. PubMed ID: 8986364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of 50 Hz magnetic fields on gap junctional intercellular communication.
    Li CM; Chiang H; Fu YD; Shao BJ; Shi JR; Yao GD
    Bioelectromagnetics; 1999; 20(5):290-4. PubMed ID: 10407514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of 50 Hz electric currents and magnetic fields on the prokaryote Propionibacterium acnes.
    Ramstad S; Futsaether CM; Johnsson A
    Bioelectromagnetics; 2000 May; 21(4):302-11. PubMed ID: 10797458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An increase in cAMP concentration in mouse hippocampal slices exposed to low-frequency and pulsed magnetic fields.
    Hogan MV; Wieraszko A
    Neurosci Lett; 2004 Aug; 366(1):43-7. PubMed ID: 15265587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NTP Toxicology and Carcinogenesis Studies of 60-HZ Magnetic Fields IN F344/N Rats and B6C3F1 Mice (Whole-body Exposure Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1999 Apr; 488():1-168. PubMed ID: 12563343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic characterization of P-type membrane ATPase from Streptococcus mutans.
    Magalhães PP; Paulino TP; Thedei G; Ciancaglini P
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Apr; 140(4):589-97. PubMed ID: 15763514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity of acidic phospholipids (CL & PA) in the activation of mitochondrial F0F1 ATPase by Mg2+.
    Ye JJ; Lin ZH
    Biochem Int; 1990 Oct; 22(2):219-26. PubMed ID: 2151017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of power-frequency magnetic fields exposure on phosphorylation and enzymatic activity of stress-activated protein kinase and its upstream kinase].
    Sun W; Yu Y; Fu Y; Chiang H; Xie H; Lu D
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2002 Aug; 20(4):256-9. PubMed ID: 14694647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of alternating the magnetic field on phosphate metabolism in the nervous system of Helix pomatia.
    Nikolic LM; Rokic MB; Todorovic NV; Kartelija GS; Nedeljkovic MS; Zakrzewska JS
    Biol Res; 2010; 43(2):243-50. PubMed ID: 21031269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.