BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 19496256)

  • 1. Effect of dextran 500 on radial migration of erythrocytes in postcapillary venules at low flow rates.
    Kim S; Ong PK; Johnson PC
    Mol Cell Biomech; 2009 Jun; 6(2):83-91. PubMed ID: 19496256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of collision rate and collision efficiency to erythrocyte aggregation in postcapillary venules at low flow rates.
    Kim S; Zhen J; Popel AS; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1947-54. PubMed ID: 17616741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregate formation of erythrocytes in postcapillary venules.
    Kim S; Popel AS; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2005 Feb; 288(2):H584-90. PubMed ID: 15458951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of fibrinogen on leukocyte margination and adhesion in postcapillary venules.
    Pearson MJ; Lipowsky HH
    Microcirculation; 2004; 11(3):295-306. PubMed ID: 15280083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of erythrocyte aggregation on leukocyte margination in postcapillary venules of rat mesentery.
    Pearson MJ; Lipowsky HH
    Am J Physiol Heart Circ Physiol; 2000 Oct; 279(4):H1460-71. PubMed ID: 11009430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of aggregation and shear rate on the dispersion of red blood cells flowing in venules.
    Bishop JJ; Popel AS; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2002 Nov; 283(5):H1985-96. PubMed ID: 12384477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of Blood Flow in a Venular Network by Infusion of Dextran 500: Evaluation with a Laser Speckle Contrast Imaging System.
    Namgung B; Ng YC; Nam J; Leo HL; Kim S
    PLoS One; 2015; 10(10):e0140038. PubMed ID: 26466371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between erythrocyte aggregate size and flow rate in skeletal muscle venules.
    Bishop JJ; Nance PR; Popel AS; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2004 Jan; 286(1):H113-20. PubMed ID: 12969894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A decrease in effective diameter of rat mesenteric venules due to leukocyte margination after a bolus injection of pentoxifylline--digital image analysis of an intravital microscopic observation.
    Hussain MA; Merchant SN; Mombasawala LS; Puniyani RR
    Microvasc Res; 2004 May; 67(3):237-44. PubMed ID: 15121449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cell velocity profiles in skeletal muscle venules at low flow rates are described by the Casson model.
    Das B; Bishop JJ; Kim S; Meiselman HJ; Johnson PC; Popel AS
    Clin Hemorheol Microcirc; 2007; 36(3):217-33. PubMed ID: 17361024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis.
    Sun C; Migliorini C; Munn LL
    Biophys J; 2003 Jul; 85(1):208-22. PubMed ID: 12829477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational fluid dynamics of aggregating red blood cells in postcapillary venules.
    Chung B; Kim S; Johnson PC; Popel AS
    Comput Methods Biomech Biomed Engin; 2009 Aug; 12(4):385-97. PubMed ID: 19675976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fahraeus effect and cell screening during tube flow of human blood. II. Effect of dextran-induced cell aggregation.
    Gaehtgens P; Kreutz F; Albrecht KH
    Biorheology; 1978; 15(3-4):155-61. PubMed ID: 737318
    [No Abstract]   [Full Text] [Related]  

  • 14. Flow behavior of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformation and erythrocyte aggregation.
    Suzuki Y; Tateishi N; Soutani M; Maeda N
    Int J Microcirc Clin Exp; 1996; 16(4):187-94. PubMed ID: 8923151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of uneven red cell influx on formation of cell-free layer in small venules.
    Namgung B; Kim S
    Microvasc Res; 2014 Mar; 92():19-24. PubMed ID: 24472285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of dextrans on platelet distribution in arterioles and venules.
    Woldhuis B; Tangelder GJ; Slaaf DW; Reneman RS
    Pflugers Arch; 1993 Nov; 425(3-4):191-8. PubMed ID: 7508595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intestinal hemodynamic effects of dextran-induced hyperviscosity in the cat.
    Gustafsson L; Falk A; Haglund U; Myrvold HE
    Int J Microcirc Clin Exp; 1985; 4(2):183-90. PubMed ID: 2412984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of red blood cell hyperaggregation on the rat microcirculation blood flow.
    Durussel JJ; Berthault MF; Guiffant G; Dufaux J
    Acta Physiol Scand; 1998 May; 163(1):25-32. PubMed ID: 9648620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red blood cell rouleaux formation in dextran solution: dependence on polymer conformation.
    Barshtein G; Tamir I; Yedgar S
    Eur Biophys J; 1998; 27(2):177-81. PubMed ID: 9530828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of intensified red blood cell aggregability on arterial pressure and mesenteric microcirculation.
    Mchedlishvili G; Gobejishvili L; Beritashvili N
    Microvasc Res; 1993 May; 45(3):233-42. PubMed ID: 7686607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.