These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 19496256)

  • 21. Effect of erythrocyte aggregation on velocity profiles in venules.
    Bishop JJ; Nance PR; Popel AS; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2001 Jan; 280(1):H222-36. PubMed ID: 11123237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of erythrocyte aggregation at normal human levels on functional capillary density in rat spinotrapezius muscle.
    Kim S; Popel AS; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2006 Mar; 290(3):H941-7. PubMed ID: 16183731
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effects of active fractions from Lycopus lucidus L. F04 on erythrocyte rheology [correction of erythrocyterheology]].
    Shi HZ; Gao NN; Li YZ; Yu JG; Fan QC; Bai GE
    Space Med Med Eng (Beijing); 2002 Oct; 15(5):331-4. PubMed ID: 12449136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanism of the dextran-induced red blood cell aggregation.
    Pribush A; Zilberman-Kravits D; Meyerstein N
    Eur Biophys J; 2007 Feb; 36(2):85-94. PubMed ID: 17091267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles.
    Ong PK; Namgung B; Johnson PC; Kim S
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1870-8. PubMed ID: 20348228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy.
    Seylaz J; Charbonné R; Nanri K; Von Euw D; Borredon J; Kacem K; Méric P; Pinard E
    J Cereb Blood Flow Metab; 1999 Aug; 19(8):863-70. PubMed ID: 10458593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blood flow velocity comparison in the eye capillaries and postcapillary venules between normal pregnant and non-pregnant women.
    Moka S; Koutsiaris AG; Garas A; Messinis I; Tachmitzi SV; Giannoukas A; Tsironi EE
    Microvasc Res; 2020 Jan; 127():103926. PubMed ID: 31521542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Red blood cell aggregation and microcirculation in rat cremaster muscle.
    Vicaut E; Hou X; Decuypère L; Taccoen A; Duvelleroy M
    Int J Microcirc Clin Exp; 1994; 14(1-2):14-21. PubMed ID: 7525499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows.
    Brust M; Aouane O; Thiébaud M; Flormann D; Verdier C; Kaestner L; Laschke MW; Selmi H; Benyoussef A; Podgorski T; Coupier G; Misbah C; Wagner C
    Sci Rep; 2014 Mar; 4():4348. PubMed ID: 24614613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of hydrogen bonding in red cell aggregation.
    Jan KM
    J Cell Physiol; 1979 Oct; 101(1):49-55. PubMed ID: 94329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Erythrocyte margination and sedimentation in skeletal muscle venules.
    Bishop JJ; Nance PR; Popel AS; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2001 Aug; 281(2):H951-8. PubMed ID: 11454602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Capillary penetration failure of blood suspensions.
    Zhou R; Chang HC
    J Colloid Interface Sci; 2005 Jul; 287(2):647-56. PubMed ID: 15925633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Erythrocytes sedimentation profiles under gravitational field as determined by He-Ne laser. VII. Influence of dextrans, albumin and saline on cellular aggregation and sedimentation rate.
    Singh M; Joseph KP
    Biorheology; 1987; 24(1):53-61. PubMed ID: 2443200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-free layer formation in small arterioles at pathological levels of erythrocyte aggregation.
    Ong PK; Jain S; Namgung B; Woo YI; Kim S
    Microcirculation; 2011 Oct; 18(7):541-51. PubMed ID: 21575094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of red blood cell aggregation with dextran by ultrasonic interferometry.
    Razavian SM; Guillemin MT; Guillet R; Beuzard Y; Boynard M
    Biorheology; 1991; 28(1-2):89-97. PubMed ID: 1710940
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rheology of erythrocyte suspensions: dextran-mediated aggregation of deformable and nondeformable erythrocytes.
    Knox RJ; Nordt FJ; Seaman GV; Brooks DE
    Biorheology; 1977; 14(2-3):75-84. PubMed ID: 562200
    [No Abstract]   [Full Text] [Related]  

  • 38. [Effect of different molecular weight dextrans on the thixotropic properties of red blood cell suspensions].
    Chen HQ
    Hua Xi Yi Ke Da Xue Xue Bao; 1986 Sep; 17(3):169-72. PubMed ID: 2435652
    [No Abstract]   [Full Text] [Related]  

  • 39. Premature red blood cells have decreased aggregation and enhanced aggregability.
    Arbell D; Orkin B; Bar-Oz B; Barshtein G; Yedgar S
    J Physiol Sci; 2008 Jun; 58(3):161-5. PubMed ID: 18405459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Blood flow structuring and its alterations in capillaries of the cerebral cortex.
    Mchedlishvili G; Varazashvili M; Mamaladze A; Momtselidze N
    Microvasc Res; 1997 May; 53(3):201-10. PubMed ID: 9211398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.