These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 19496586)
1. Characterization of variation in the lignan content and composition of winter rye, spring wheat, and spring oat. Smeds AI; Jauhiainen L; Tuomola E; Peltonen-Sainio P J Agric Food Chem; 2009 Jul; 57(13):5837-42. PubMed ID: 19496586 [TBL] [Abstract][Full Text] [Related]
2. Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. Smeds AI; Eklund PC; Sjöholm RE; Willför SM; Nishibe S; Deyama T; Holmbom BR J Agric Food Chem; 2007 Feb; 55(4):1337-46. PubMed ID: 17261017 [TBL] [Abstract][Full Text] [Related]
3. Alkylresorcinols as markers of whole grain wheat and rye in cereal products. Chen Y; Ross AB; Aman P; Kamal-Eldin A J Agric Food Chem; 2004 Dec; 52(26):8242-6. PubMed ID: 15612824 [TBL] [Abstract][Full Text] [Related]
4. Alkylresorcinols in selected Polish rye and wheat cereals and whole-grain cereal products. Kulawinek M; Jaromin A; Kozubek A; Zarnowski R J Agric Food Chem; 2008 Aug; 56(16):7236-42. PubMed ID: 18666777 [TBL] [Abstract][Full Text] [Related]
5. Volatile metabolites in various cereal grains. Buśko M; Jeleń H; Góral T; Chmielewski J; Stuper K; Szwajkowska-Michałek L; Tyrakowska B; Perkowski J Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 Nov; 27(11):1574-81. PubMed ID: 20730644 [TBL] [Abstract][Full Text] [Related]
6. Effects of genotype and environment on steryl ferulates in wheat and rye in the HEALTHGRAIN diversity screen. Nurmi T; Lampi AM; Nyström L; Turunen M; Piironen V J Agric Food Chem; 2010 Sep; 58(17):9332-40. PubMed ID: 20394372 [TBL] [Abstract][Full Text] [Related]
7. Effect of thermal heating on some lignans in flax seeds, sesame seeds and rye. Gerstenmeyer E; Reimer S; Berghofer E; Schwartz H; Sontag G Food Chem; 2013 Jun; 138(2-3):1847-55. PubMed ID: 23411317 [TBL] [Abstract][Full Text] [Related]
8. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model. Nordlund E; Aura AM; Mattila I; Kössö T; Rouau X; Poutanen K J Agric Food Chem; 2012 Aug; 60(33):8134-45. PubMed ID: 22731123 [TBL] [Abstract][Full Text] [Related]
9. Enhancing lignan biosynthesis by over-expressing pinoresinol lariciresinol reductase in transgenic wheat. Ayella AK; Trick HN; Wang W Mol Nutr Food Res; 2007 Dec; 51(12):1518-26. PubMed ID: 18030664 [TBL] [Abstract][Full Text] [Related]
10. Identification and stereochemical characterization of lignans in flaxseed and pumpkin seeds. Sicilia T; Niemeyer HB; Honig DM; Metzler M J Agric Food Chem; 2003 Feb; 51(5):1181-8. PubMed ID: 12590454 [TBL] [Abstract][Full Text] [Related]
11. Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Milder IE; Arts IC; van de Putte B; Venema DP; Hollman PC Br J Nutr; 2005 Mar; 93(3):393-402. PubMed ID: 15877880 [TBL] [Abstract][Full Text] [Related]
12. Lignan profile in seeds of modern and old Italian soft wheat (Triticum aestivum L.) cultivars as revealed by CE-MS analyses. Dinelli G; Marotti I; Bosi S; Benedettelli S; Ghiselli L; Cortacero-Ramírez S; Carrasco-Pancorbo A; Segura-Carretero A; Fernández-Gutiérrez A Electrophoresis; 2007 Nov; 28(22):4212-9. PubMed ID: 17948259 [TBL] [Abstract][Full Text] [Related]
13. Grain characteristics, chemical composition, and functional properties of rye (Secale cereale L.) as influenced by genotype and harvest year. Hansen HB; Møller B; Andersen SB; Jørgensen JR; Hansen A J Agric Food Chem; 2004 Apr; 52(8):2282-91. PubMed ID: 15080634 [TBL] [Abstract][Full Text] [Related]
14. Qualitative characterization of benzoxazinoid derivatives in whole grain rye and wheat by LC-MS metabolite profiling. Hanhineva K; Rogachev I; Aura AM; Aharoni A; Poutanen K; Mykkänen H J Agric Food Chem; 2011 Feb; 59(3):921-7. PubMed ID: 21214244 [TBL] [Abstract][Full Text] [Related]
15. Optimization of a liquid chromatography-tandem mass spectrometry method for quantification of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in foods. Milder IE; Arts IC; Venema DP; Lasaroms JJ; Wähälä K; Hollman PC J Agric Food Chem; 2004 Jul; 52(15):4643-51. PubMed ID: 15264894 [TBL] [Abstract][Full Text] [Related]
16. Identification and quantification of lignans in wheat bran by gas chromatography-electron capture detection. Cukelj N; Jakasa I; Sarajlija H; Novotni D; Curić D Talanta; 2011 Mar; 84(1):127-32. PubMed ID: 21315909 [TBL] [Abstract][Full Text] [Related]
17. Absorption of plant lignans from cereals in an experimental pig model. Bolvig AK; Adlercreutz H; Theil PK; Jørgensen H; Bach Knudsen KE Br J Nutr; 2016 May; 115(10):1711-20. PubMed ID: 27001342 [TBL] [Abstract][Full Text] [Related]
18. Alkylresorcinols in Latvian and Finnish breads. Meija L; Samaletdin A; Koskela A; Lejnieks A; Lietuvietis V; Adlercreutz H Int J Food Sci Nutr; 2013 Feb; 64(1):117-21. PubMed ID: 22816971 [TBL] [Abstract][Full Text] [Related]
19. Measurement of wheat gluten and barley hordeins in contaminated oats from Europe, the United States and Canada by Sandwich R5 ELISA. Hernando A; Mujico JR; Mena MC; Lombardía M; Méndez E Eur J Gastroenterol Hepatol; 2008 Jun; 20(6):545-54. PubMed ID: 18467914 [TBL] [Abstract][Full Text] [Related]
20. Cultivar and year-to-year variation of phytosterol content in rye (Secale cereale L.). Zangenberg M; Hansen HB; Jørgensen JR; Hellgren LI J Agric Food Chem; 2004 May; 52(9):2593-7. PubMed ID: 15113163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]