These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 19496586)
21. Alkylresorcinols in wheat varieties in the HEALTHGRAIN Diversity Screen. Andersson AA; Kamal-Eldin A; Fraś A; Boros D; Aman P J Agric Food Chem; 2008 Nov; 56(21):9722-5. PubMed ID: 18921971 [TBL] [Abstract][Full Text] [Related]
22. Variability in xylanase and xylanase inhibition activities in different cereals in the HEALTHGRAIN diversity screen and contribution of environment and genotype to this variability in common wheat. Gebruers K; Dornez E; Bedõ Z; Rakszegi M; Courtin CM; Delcour JA J Agric Food Chem; 2010 Sep; 58(17):9362-71. PubMed ID: 20462210 [TBL] [Abstract][Full Text] [Related]
23. Secoisolariciresinol and matairesinol of sea buckthorn (Hippophaë rhamnoides L.) berries of different subspecies and harvesting times. Yang B; Linko AM; Adlercreutz H; Kallio H J Agric Food Chem; 2006 Oct; 54(21):8065-70. PubMed ID: 17032010 [TBL] [Abstract][Full Text] [Related]
24. The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation. Reale A; Konietzny U; Coppola R; Sorrentino E; Greiner R J Agric Food Chem; 2007 Apr; 55(8):2993-7. PubMed ID: 17373819 [TBL] [Abstract][Full Text] [Related]
25. Quantitative aspects of the metabolism of lignans in pigs fed fibre-enriched rye and wheat bread. Laerke HN; Mortensen MA; Hedemann MS; Bach Knudsen KE; Penalvo JL; Adlercreutz H Br J Nutr; 2009 Oct; 102(7):985-94. PubMed ID: 19393112 [TBL] [Abstract][Full Text] [Related]
26. Lignan precursors from flaxseed or rye bran do not protect against the development of intestinal neoplasia in ApcMin mice. van Kranen HJ; Mortensen A; Sørensen IK; van den Berg-Wijnands J; Beems R; Nurmi T; Adlercreutz H; van Kreijl CF Nutr Cancer; 2003; 45(2):203-10. PubMed ID: 12881015 [TBL] [Abstract][Full Text] [Related]
27. Effect of maturity on degradation kinetics of sod-seeded cereal grain forage grown in northern Arkansas. Coblentz WK; Coffey KP; Turner JE; Scarbrough DA; Weyers JS; Harrison KF; Johnson ZB; Daniels LB; Rosenkrans CF; Kellogg DW; Hubbell DS J Dairy Sci; 2000 Nov; 83(11):2499-511. PubMed ID: 11104269 [TBL] [Abstract][Full Text] [Related]
28. Free amino acids and sugars in rye grain: implications for acrylamide formation. Curtis TY; Powers SJ; Balagiannis D; Elmore JS; Mottram DS; Parry MA; Rakszegi M; Bedö Z; Shewry PR; Halford NG J Agric Food Chem; 2010 Feb; 58(3):1959-69. PubMed ID: 20055414 [TBL] [Abstract][Full Text] [Related]
29. Effects of environment and genotype on folate contents in wheat in the HEALTHGRAIN diversity screen. Kariluoto S; Edelmann M; Piironen V J Agric Food Chem; 2010 Sep; 58(17):9324-31. PubMed ID: 20392043 [TBL] [Abstract][Full Text] [Related]
30. Intestinal metabolism of rye lignans in pigs. Glitsø LV; Mazur WM; Adlercreutz H; Wähälä K; Mäkelä T; Sandström B; Bach Knudsen KE Br J Nutr; 2000 Oct; 84(4):429-37. PubMed ID: 11103213 [TBL] [Abstract][Full Text] [Related]
31. Phylogenetic relationships among genotypes of worldwide collection of spring and winter ryes (Secale cereale L.) determined by RAPD-PCR markers. Ma R; Yli-Mattila T; Pulli S Hereditas; 2004; 140(3):210-21. PubMed ID: 15198711 [TBL] [Abstract][Full Text] [Related]
32. Dietary intake and urinary excretion of lignans in Finnish men. Nurmi T; Mursu J; Peñalvo JL; Poulsen HE; Voutilainen S Br J Nutr; 2010 Mar; 103(5):677-85. PubMed ID: 19811696 [TBL] [Abstract][Full Text] [Related]
33. Alkylresorcinols in cereals and cereal products. Ross AB; Shepherd MJ; Schüpphaus M; Sinclair V; Alfaro B; Kamal-Eldin A; Aman P J Agric Food Chem; 2003 Jul; 51(14):4111-8. PubMed ID: 12822955 [TBL] [Abstract][Full Text] [Related]
34. Isolation and characterization of folate-producing bacteria from oat bran and rye flakes. Herranen M; Kariluoto S; Edelmann M; Piironen V; Ahvenniemi K; Iivonen V; Salovaara H; Korhola M Int J Food Microbiol; 2010 Sep; 142(3):277-85. PubMed ID: 20678822 [TBL] [Abstract][Full Text] [Related]
35. [Production of wheat-rye substitution lines based on winter rye cultivars with karyotype identification by means of C-banding, GISH, and SSR markers]. Silkova OG; Dobrovol'skaia OB; Dubovets NI; Adonina IG; Kravtsova LA; Shchapova AI; Shumnyĭ VK Genetika; 2007 Aug; 43(8):1149-52. PubMed ID: 17958318 [TBL] [Abstract][Full Text] [Related]
36. Identification and quantification of seed carotenoids in selected wheat species. Abdel-Aal el-SM; Young JC; Rabalski I; Hucl P; Fregeau-Reid J J Agric Food Chem; 2007 Feb; 55(3):787-94. PubMed ID: 17263475 [TBL] [Abstract][Full Text] [Related]
37. Alkylresorcinol content and homologue composition in durum wheat (Triticum durum) kernels and pasta products. Landberg R; Kamal-Eldin A; Andersson R; Aman P J Agric Food Chem; 2006 Apr; 54(8):3012-4. PubMed ID: 16608224 [TBL] [Abstract][Full Text] [Related]
38. New lignan metabolites in rat urine. Smeds AI; Saarinen NM; Eklund PC; Sjöholm RE; Mäkelä SI J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 816(1-2):87-97. PubMed ID: 15664338 [TBL] [Abstract][Full Text] [Related]
39. Effects of genotype and environment on free amino acid levels in wheat grain: implications for acrylamide formation during processing. Curtis TY; Muttucumaru N; Shewry PR; Parry MA; Powers SJ; Elmore JS; Mottram DS; Hook S; Halford NG J Agric Food Chem; 2009 Feb; 57(3):1013-21. PubMed ID: 19143525 [TBL] [Abstract][Full Text] [Related]
40. Environmentally induced changes in amino acid composition in the grain of durum wheat grown under different water and temperature regimes in a Mediterranean environment. Del Moral LF; Rharrabti Y; Martos V; Royo C J Agric Food Chem; 2007 Oct; 55(20):8144-51. PubMed ID: 17848082 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]