BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 19496665)

  • 1. Comparison of equine tendon-, muscle-, and bone marrow-derived cells cultured on tendon matrix.
    Stewart AA; Barrett JG; Byron CR; Yates AC; Durgam SS; Evans RB; Stewart MC
    Am J Vet Res; 2009 Jun; 70(6):750-7. PubMed ID: 19496665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of equine tendon- and bone marrow-derived cells cultured on tendon matrix with or without insulin-like growth factor-I supplementation.
    Durgam SS; Stewart AA; Pondenis HC; Gutierrez-Nibeyro SM; Evans RB; Stewart MC
    Am J Vet Res; 2012 Jan; 73(1):153-61. PubMed ID: 22204302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of equine tendon- and bone marrow-derived cells to monolayer expansion with fibroblast growth factor-2 and sequential culture with pulverized tendon and insulin-like growth factor-I.
    Durgam SS; Stewart AA; Pondenis HC; Yates AC; Evans RB; Stewart MC
    Am J Vet Res; 2012 Jan; 73(1):162-70. PubMed ID: 22204303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural immunolocalization of cartilage oligomeric matrix protein (COMP) in relation to collagen fibrils in the equine tendon.
    Södersten F; Ekman S; Eloranta ML; HeinegÄrd D; Dudhia J; Hultenby K
    Matrix Biol; 2005 Aug; 24(5):376-85. PubMed ID: 16005620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue engineering of tendons and ligaments by human bone marrow stromal cells in a liquid fibrin matrix in immunodeficient rats: results of a histologic study.
    Hankemeier S; van Griensven M; Ezechieli M; Barkhausen T; Austin M; Jagodzinski M; Meller R; Bosch U; Krettek C; Zeichen J
    Arch Orthop Trauma Surg; 2007 Nov; 127(9):815-21. PubMed ID: 17569067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of the characteristics and properties of tendinocytes derived from three tendons in the equine forelimb.
    Hosaka YZ; Takahashi H; Uratsuji T; Tangkawattana P; Ueda H; Takehana K
    Tissue Cell; 2010 Feb; 42(1):9-17. PubMed ID: 19640554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical and site-specific effects of insulin-like growth factor I on intrinsic tenocyte activity in equine flexor tendons.
    Murphy DJ; Nixon AJ
    Am J Vet Res; 1997 Jan; 58(1):103-9. PubMed ID: 8989505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of tenocytes and mesenchymal stem cells for use in flexor tendon tissue engineering.
    Kryger GS; Chong AK; Costa M; Pham H; Bates SJ; Chang J
    J Hand Surg Am; 2007; 32(5):597-605. PubMed ID: 17481995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction.
    Zantop T; Gilbert TW; Yoder MC; Badylak SF
    J Orthop Res; 2006 Jun; 24(6):1299-309. PubMed ID: 16649228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of intralesional injection of bone marrow derived mesenchymal stem cells and bone marrow supernatant on collagen fibril size in a surgical model of equine superficial digital flexor tendonitis.
    Caniglia CJ; Schramme MC; Smith RK
    Equine Vet J; 2012 Sep; 44(5):587-93. PubMed ID: 22150794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serum-dependent effects on adult and fetal tendon fibroblast migration and collagen expression.
    Brink HE; Miller GJ; Beredjiklian PK; Nicoll SB
    Wound Repair Regen; 2006; 14(2):179-86. PubMed ID: 16630107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone-forming and bone-resorbing cell lines derived from bone marrow in tissue culture.
    Hirano H; Urist MR
    Clin Orthop Relat Res; 1981; (154):234-48. PubMed ID: 7009010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Platelet-rich plasma enhances the initial mobilization of circulation-derived cells for tendon healing.
    Kajikawa Y; Morihara T; Sakamoto H; Matsuda K; Oshima Y; Yoshida A; Nagae M; Arai Y; Kawata M; Kubo T
    J Cell Physiol; 2008 Jun; 215(3):837-45. PubMed ID: 18181148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chondrogenic potential of mesenchymal stromal cells derived from equine bone marrow and umbilical cord blood.
    Berg L; Koch T; Heerkens T; Bessonov K; Thomsen P; Betts D
    Vet Comp Orthop Traumatol; 2009; 22(5):363-70. PubMed ID: 19750290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GFP chimeric models exhibited a biphasic pattern of mesenchymal cell invasion in tendon healing.
    Kajikawa Y; Morihara T; Watanabe N; Sakamoto H; Matsuda K; Kobayashi M; Oshima Y; Yoshida A; Kawata M; Kubo T
    J Cell Physiol; 2007 Mar; 210(3):684-91. PubMed ID: 17154365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell morphology and collagen types in equine tendon scar.
    Williams IF; Heaton A; McCullagh KG
    Res Vet Sci; 1980 May; 28(3):302-10. PubMed ID: 7414083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations in cellular proliferation and matrix synthesis in intrasynovial and extrasynovial tendons: an in vitro study in dogs.
    Abrahamsson SO; Gelberman RH; Lohmander SL
    J Hand Surg Am; 1994 Mar; 19(2):259-65. PubMed ID: 8201191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo comparison of five biomaterials used for orthopedic soft tissue augmentation.
    Cook JL; Fox DB; Kuroki K; Jayo M; De Deyne PG
    Am J Vet Res; 2008 Jan; 69(1):148-56. PubMed ID: 18167101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone morphogenetic protein 13 stimulates cell proliferation and production of collagen in human patellar tendon fibroblasts.
    Wong YP; Fu SC; Cheuk YC; Lee KM; Wong MW; Chan KM
    Acta Orthop; 2005 Jun; 76(3):421-7. PubMed ID: 16156473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vitro comparison of human flexor and extensor tendon cells.
    Evans CE; Trail IA
    J Hand Surg Br; 2001 Aug; 26(4):307-13. PubMed ID: 11469831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.