These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19497012)

  • 21. One-channel EOG artifact correction: an analytic approach.
    Matthäus L; Pham T; Croft RJ
    Psychophysiology; 2008 Jul; 45(4):569-78. PubMed ID: 18503489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tonic and phasic electroencephalographic dynamics during continuous compensatory tracking.
    Huang RS; Jung TP; Delorme A; Makeig S
    Neuroimage; 2008 Feb; 39(4):1896-909. PubMed ID: 18083601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sinusoidal smooth pursuit eye tracking at different stimulus frequencies: position error and velocity error before catch-up saccades in schizophrenia and in major depressive disorder.
    Fabisch K; Fitz W; Fabisch H; Haas-Krammer A; Klug G; Zapotoczky S; Kapfhammer HP
    Aust N Z J Psychiatry; 2009 Sep; 43(9):855-65. PubMed ID: 19670059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of ocular artifacts on (lateralized) broadband power in the EEG.
    Hagemann D; Naumann E
    Clin Neurophysiol; 2001 Feb; 112(2):215-31. PubMed ID: 11165523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Post-movement beta synchronisation after complex prosaccade task.
    Gulyás S; Szirmai I; Kamondi A
    Clin Neurophysiol; 2009 Jan; 120(1):11-7. PubMed ID: 19026589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monitoring eye movement with a computer based Electro-oculogram (EOG).
    Dibble JM; Teters CK
    Biomed Sci Instrum; 2004; 40():463-8. PubMed ID: 15134002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated eye tracking system calibration using artificial neural networks.
    Coughlin MJ; Cutmore TR; Hine TJ
    Comput Methods Programs Biomed; 2004 Dec; 76(3):207-20. PubMed ID: 15501507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of the ocular artifact from the EEG: a comparison of time and frequency domain methods with simulated and real data.
    Kenemans JL; Molenaar PC; Verbaten MN; Slangen JL
    Psychophysiology; 1991 Jan; 28(1):114-21. PubMed ID: 1886960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The correction of eye blink artefacts in the EEG: a comparison of two prominent methods.
    Hoffmann S; Falkenstein M
    PLoS One; 2008 Aug; 3(8):e3004. PubMed ID: 18714341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EEG gamma band oscillations differentiate the planning of spatially directed movements of the arm versus eye: multivariate empirical mode decomposition analysis.
    Park C; Plank M; Snider J; Kim S; Huang HC; Gepshtein S; Coleman TP; Poizner H
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1083-96. PubMed ID: 25014959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measurement of saccadic eye movements by electrooculography for simultaneous EEG recording.
    Jia Y; Tyler CW
    Behav Res Methods; 2019 Oct; 51(5):2139-2151. PubMed ID: 31313136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.
    Ma J; Zhang Y; Cichocki A; Matsuno F
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):876-89. PubMed ID: 25398172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of eyelid closure, blinks, and eye movements on the electroencephalogram.
    Iwasaki M; Kellinghaus C; Alexopoulos AV; Burgess RC; Kumar AN; Han YH; Lüders HO; Leigh RJ
    Clin Neurophysiol; 2005 Apr; 116(4):878-85. PubMed ID: 15792897
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Eye movements are not a prerequisite for learning movement sequence timing through observation.
    Hayes SJ; Timmis MA; Bennett SJ
    Acta Psychol (Amst); 2009 Jul; 131(3):202-8. PubMed ID: 19500770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EOG correction: comparing different calibration methods, and determining the number of epochs required in a calibration average.
    Croft RJ; Barry RJ
    Clin Neurophysiol; 2000 Mar; 111(3):440-3. PubMed ID: 10699404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating neural correlates of locomotion transition via temporal relation of EEG and EOG-recorded eye movements.
    Mehra D; Tiwari A; Joshi D
    Comput Biol Med; 2021 May; 132():104350. PubMed ID: 33799217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Activation-dependent characteristics of the electroencephalogram during visual information processing: II Results of an automatic amplitude analysis based on momentary values of signal voltage (author's transl)].
    Gruner P; Otto E; Pietschmann M
    Act Nerv Super (Praha); 1978 Dec; 20(4):302-11. PubMed ID: 735744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain.
    Woestenburg JC; Verbaten MN; Slangen JL
    Biol Psychol; 1983; 16(1-2):127-47. PubMed ID: 6850023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative Assessment of the Training Improvement in a Motor-Cognitive Task by Using EEG, ECG and EOG Signals.
    Borghini G; Aricò P; Graziani I; Salinari S; Sun Y; Taya F; Bezerianos A; Thakor NV; Babiloni F
    Brain Topogr; 2016 Jan; 29(1):149-61. PubMed ID: 25609212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The transfer of EOG activity into the EEG for eyes open and closed.
    Gasser T; Sroka L; Möcks J
    Electroencephalogr Clin Neurophysiol; 1985 Aug; 61(2):181-93. PubMed ID: 2410229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.