BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 19497320)

  • 1. Changes in progenitor populations and ongoing neurogenesis in the regenerating chick spinal cord.
    Whalley K; Gögel S; Lange S; Ferretti P
    Dev Biol; 2009 Aug; 332(2):234-45. PubMed ID: 19497320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction.
    Decimo I; Bifari F; Rodriguez FJ; Malpeli G; Dolci S; Lavarini V; Pretto S; Vasquez S; Sciancalepore M; Montalbano A; Berton V; Krampera M; Fumagalli G
    Stem Cells; 2011 Dec; 29(12):2062-76. PubMed ID: 22038821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-translational regulation of Crmp in developing and regenerating chick spinal cord.
    Gögel S; Lange S; Leung KY; Greene ND; Ferretti P
    Dev Neurobiol; 2010 May; 70(6):456-71. PubMed ID: 20162635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal progressive antigen expression in radial glia after contusive spinal cord injury in adult rats.
    Shibuya S; Miyamoto O; Itano T; Mori S; Norimatsu H
    Glia; 2003 Apr; 42(2):172-83. PubMed ID: 12655601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Successful neural regeneration in amniotes: the developing chick spinal cord.
    Ferretti P; Whalley K
    Cell Mol Life Sci; 2008 Jan; 65(1):45-53. PubMed ID: 18030420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Traumatic brain injury-induced hippocampal neurogenesis requires activation of early nestin-expressing progenitors.
    Yu TS; Zhang G; Liebl DJ; Kernie SG
    J Neurosci; 2008 Nov; 28(48):12901-12. PubMed ID: 19036984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different Fgfs have distinct roles in regulating neurogenesis after spinal cord injury in zebrafish.
    Goldshmit Y; Tang JKKY; Siegel AL; Nguyen PD; Kaslin J; Currie PD; Jusuf PR
    Neural Dev; 2018 Nov; 13(1):24. PubMed ID: 30447699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further amputations of the tail in adult Triturus carnifex: contribution to the study on the nature of regenerated spinal cord.
    Margotta V
    Ital J Anat Embryol; 2008; 113(3):167-86. PubMed ID: 19205589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury.
    Hasegawa K; Chang YW; Li H; Berlin Y; Ikeda O; Kane-Goldsmith N; Grumet M
    Exp Neurol; 2005 Jun; 193(2):394-410. PubMed ID: 15869942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural stem/progenitor cells are activated during tail regeneration in the leopard gecko (Eublepharis macularius).
    Gilbert EAB; Vickaryous MK
    J Comp Neurol; 2018 Feb; 526(2):285-309. PubMed ID: 28980312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of transitin mRNA, a nestin-like intermediate filament family member, in chicken radial glia processes.
    Lee JA; Cole GJ
    J Comp Neurol; 2000 Mar; 418(4):473-83. PubMed ID: 10713574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tcf7l1 is required for spinal cord progenitor maintenance.
    Kim HS; Dorsky RI
    Dev Dyn; 2011 Oct; 240(10):2256-64. PubMed ID: 21932308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radial glial progenitors repair the zebrafish spinal cord following transection.
    Briona LK; Dorsky RI
    Exp Neurol; 2014 Jun; 256():81-92. PubMed ID: 24721238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein deiminases: new players in the developmentally regulated loss of neural regenerative ability.
    Lange S; Gögel S; Leung KY; Vernay B; Nicholas AP; Causey CP; Thompson PR; Greene ND; Ferretti P
    Dev Biol; 2011 Jul; 355(2):205-14. PubMed ID: 21539830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors.
    Yoo S; Wrathall JR
    Dev Neurobiol; 2007 Jun; 67(7):860-74. PubMed ID: 17506499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural cells and their progenitors in regenerating zebrafish spinal cord.
    Hui SP; Nag TC; Ghosh S
    Int J Dev Biol; 2020; 64(4-5-6):353-366. PubMed ID: 32658995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leptomeningeal-derived doublecortin-expressing cells in poststroke brain.
    Nakagomi T; Molnár Z; Taguchi A; Nakano-Doi A; Lu S; Kasahara Y; Nakagomi N; Matsuyama T
    Stem Cells Dev; 2012 Sep; 21(13):2350-4. PubMed ID: 22339778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate of endogenous stem/progenitor cells following spinal cord injury.
    Horky LL; Galimi F; Gage FH; Horner PJ
    J Comp Neurol; 2006 Oct; 498(4):525-38. PubMed ID: 16874803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish.
    Goldshmit Y; Sztal TE; Jusuf PR; Hall TE; Nguyen-Chi M; Currie PD
    J Neurosci; 2012 May; 32(22):7477-92. PubMed ID: 22649227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon.
    März M; Chapouton P; Diotel N; Vaillant C; Hesl B; Takamiya M; Lam CS; Kah O; Bally-Cuif L; Strähle U
    Glia; 2010 May; 58(7):870-88. PubMed ID: 20155821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.