These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 19497355)
1. Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Pinheiro GL; Marques CS; Costa MD; Reis PA; Alves MS; Carvalho CM; Fietto LG; Fontes EP Gene; 2009 Sep; 444(1-2):10-23. PubMed ID: 19497355 [TBL] [Abstract][Full Text] [Related]
2. Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.). Meng Q; Zhang C; Gai J; Yu D J Plant Physiol; 2007 Aug; 164(8):1002-12. PubMed ID: 16919368 [TBL] [Abstract][Full Text] [Related]
3. A cotton dehydration responsive element binding protein functions as a transcriptional repressor of DRE-mediated gene expression. Huang B; Liu JY Biochem Biophys Res Commun; 2006 May; 343(4):1023-31. PubMed ID: 16574068 [TBL] [Abstract][Full Text] [Related]
4. Identification of an NAP-like transcription factor BeNAC1 regulating leaf senescence in bamboo (Bambusa emeiensis'Viridiflavus'). Chen Y; Qiu K; Kuai B; Ding Y Physiol Plant; 2011 Aug; 142(4):361-71. PubMed ID: 21401619 [TBL] [Abstract][Full Text] [Related]
5. Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Chen J; Xia X; Yin W Biochem Biophys Res Commun; 2009 Jan; 378(3):483-7. PubMed ID: 19032934 [TBL] [Abstract][Full Text] [Related]
6. Identification of transcription factors predominantly expressed in soybean flowers and characterization of GmSEP1 encoding a SEPALLATA1-like protein. Huang F; Chi Y; Gai J; Yu D Gene; 2009 Jun; 438(1-2):40-8. PubMed ID: 19289160 [TBL] [Abstract][Full Text] [Related]
7. Canola (Brassica napus L.) NAC103 transcription factor gene is a novel player inducing reactive oxygen species accumulation and cell death in plants. Niu F; Wang B; Wu F; Yan J; Li L; Wang C; Wang Y; Yang B; Jiang YQ Biochem Biophys Res Commun; 2014 Nov; 454(1):30-5. PubMed ID: 25450358 [TBL] [Abstract][Full Text] [Related]
8. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Zheng X; Chen B; Lu G; Han B Biochem Biophys Res Commun; 2009 Feb; 379(4):985-9. PubMed ID: 19135985 [TBL] [Abstract][Full Text] [Related]
9. Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Chen Z; Yang X; Tang M; Wang Y; Zhang Q; Li H; Zhou Y; Sun F; Cui X Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293235 [TBL] [Abstract][Full Text] [Related]
10. The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. Peel GJ; Pang Y; Modolo LV; Dixon RA Plant J; 2009 Jul; 59(1):136-49. PubMed ID: 19368693 [TBL] [Abstract][Full Text] [Related]
11. GmNAC5, a NAC transcription factor, is a transient response regulator induced by abiotic stress in soybean. Jin H; Xu G; Meng Q; Huang F; Yu D ScientificWorldJournal; 2013; 2013():768972. PubMed ID: 23983646 [TBL] [Abstract][Full Text] [Related]
12. Isolation of a novel nodulin: a molecular marker of osmotic stress in Glycine max/Bradyrhizobium japonicum nodule. Clement M; Boncompagni E; de Almeida-Engler J; Herouart D Plant Cell Environ; 2006 Sep; 29(9):1841-52. PubMed ID: 16913873 [TBL] [Abstract][Full Text] [Related]
13. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276 [TBL] [Abstract][Full Text] [Related]
14. Ethylene response factor TERF1 enhances glucose sensitivity in tobacco through activating the expression of sugar-related genes. Li A; Zhang Z; Wang XC; Huang R J Integr Plant Biol; 2009 Feb; 51(2):184-93. PubMed ID: 19200157 [TBL] [Abstract][Full Text] [Related]
15. Contrasting roles of GmNAC065 and GmNAC085 in natural senescence, plant development, multiple stresses and cell death responses. Melo BP; Lourenço-Tessutti IT; Fraga OT; Pinheiro LB; de Jesus Lins CB; Morgante CV; Engler JA; Reis PAB; Grossi-de-Sá MF; Fontes EPB Sci Rep; 2021 May; 11(1):11178. PubMed ID: 34045652 [TBL] [Abstract][Full Text] [Related]
16. The Stress-Induced Soybean NAC Transcription Factor GmNAC81 Plays a Positive Role in Developmentally Programmed Leaf Senescence. Pimenta MR; Silva PA; Mendes GC; Alves JR; Caetano HD; Machado JP; Brustolini OJ; Carpinetti PA; Melo BP; Silva JC; Rosado GL; Ferreira MF; Dal-Bianco M; Picoli EA; Aragao FJ; Ramos HJ; Fontes EP Plant Cell Physiol; 2016 May; 57(5):1098-114. PubMed ID: 27016095 [TBL] [Abstract][Full Text] [Related]
18. Proteome analysis of tobacco leaves under salt stress. Razavizadeh R; Ehsanpour AA; Ahsan N; Komatsu S Peptides; 2009 Sep; 30(9):1651-9. PubMed ID: 19573571 [TBL] [Abstract][Full Text] [Related]
19. High external phosphate (Pi) increases sodium ion uptake and reduces salt tolerance of 'Pi-tolerant' soybean. Phang TH; Shao G; Liao H; Yan X; Lam HM Physiol Plant; 2009 Apr; 135(4):412-25. PubMed ID: 19210751 [TBL] [Abstract][Full Text] [Related]
20. A protein containing an XYPPX repeat and a C2 domain is associated with virally induced hypersensitive cell death in plants. Sakamoto M; Tomita R; Kobayashi K FEBS Lett; 2009 Aug; 583(15):2552-6. PubMed ID: 19619544 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]