BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19497363)

  • 1. Ineffective GSH regeneration enhances G6PD-knockdown Hep G2 cell sensitivity to diamide-induced oxidative damage.
    Gao LP; Cheng ML; Chou HJ; Yang YH; Ho HY; Chiu DT
    Free Radic Biol Med; 2009 Sep; 47(5):529-35. PubMed ID: 19497363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of global metabolic responses of glucose-6-phosphate dehydrogenase-deficient hepatoma cells to diamide-induced oxidative stress.
    Ho HY; Cheng ML; Shiao MS; Chiu DT
    Free Radic Biol Med; 2013 Jan; 54():71-84. PubMed ID: 23142419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteome-wide dysregulation by glucose-6-phosphate dehydrogenase (G6PD) reveals a novel protective role for G6PD in aflatoxin B₁-mediated cytotoxicity.
    Lin HR; Wu CC; Wu YH; Hsu CW; Cheng ML; Chiu DT
    J Proteome Res; 2013 Jul; 12(7):3434-48. PubMed ID: 23742107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery.
    Préville X; Salvemini F; Giraud S; Chaufour S; Paul C; Stepien G; Ursini MV; Arrigo AP
    Exp Cell Res; 1999 Feb; 247(1):61-78. PubMed ID: 10047448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose-6-phosphate dehydrogenase-deficient cells show an increased propensity for oxidant-induced senescence.
    Cheng ML; Ho HY; Wu YH; Chiu DT
    Free Radic Biol Med; 2004 Mar; 36(5):580-91. PubMed ID: 14980702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knockdown of glucose-6-phosphate dehydrogenase (G6PD) following cerebral ischemic reperfusion: the pros and cons.
    Zhao G; Zhao Y; Wang X; Xu Y
    Neurochem Int; 2012 Jul; 61(2):146-55. PubMed ID: 22580330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between the enzyme activity, lipid peroxidation and red blood cells deformability in hemizygous and heterozygous glucose-6-phosphate dehydrogenase deficient individuals.
    Gurbuz N; Yalcin O; Aksu TA; Baskurt OK
    Clin Hemorheol Microcirc; 2004; 31(3):235-42. PubMed ID: 15322329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new G6PD knockdown tumor-cell line with reduced proliferation and increased susceptibility to oxidative stress.
    Li D; Zhu Y; Tang Q; Lu H; Li H; Yang Y; Li Z; Tong S
    Cancer Biother Radiopharm; 2009 Feb; 24(1):81-90. PubMed ID: 19243250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchrony of G6PD activity and RBC fragility under oxidative stress exerted at normal and G6PD deficiency.
    Abboud MM; Al-Awaida W
    Clin Biochem; 2010 Mar; 43(4-5):455-60. PubMed ID: 19941843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quartz inhibits glucose 6-phosphate dehydrogenase in murine alveolar macrophages.
    Polimeni M; Gazzano E; Ghiazza M; Fenoglio I; Bosia A; Fubini B; Ghigo D
    Chem Res Toxicol; 2008 Apr; 21(4):888-94. PubMed ID: 18370412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation in G6PD gene leads to loss of cellular control of protein glutathionylation: mechanism and implication.
    Ayene IS; Biaglow JE; Kachur AV; Stamato TD; Koch CJ
    J Cell Biochem; 2008 Jan; 103(1):123-35. PubMed ID: 17516514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)-dependent isocitrate dehydrogenase.
    Jo SH; Lee SH; Chun HS; Lee SM; Koh HJ; Lee SE; Chun JS; Park JW; Huh TL
    Biochem Biophys Res Commun; 2002 Mar; 292(2):542-9. PubMed ID: 11906195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low oxygen tension alleviates oxidative damage and delays cellular senescence in G6PD-deficient cells.
    Ho HY; Cheng ML; Cheng PF; Chiu DT
    Free Radic Res; 2007 May; 41(5):571-9. PubMed ID: 17454140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoprotective effect of arjunolic acid in response to sodium fluoride mediated oxidative stress and cell death via necrotic pathway.
    Ghosh J; Das J; Manna P; Sil PC
    Toxicol In Vitro; 2008 Dec; 22(8):1918-26. PubMed ID: 18845235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of glucose-6-phosphate dehydrogenase on intracellular gsh level in Raji cells during oxidative stress].
    Zhang DT; Hu LH; Yang YZ
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2007 Nov; 23(4):487-90. PubMed ID: 21180140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression.
    Salvemini F; Franzé A; Iervolino A; Filosa S; Salzano S; Ursini MV
    J Biol Chem; 1999 Jan; 274(5):2750-7. PubMed ID: 9915806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line: role of glutathione in the resistance to cadmium.
    Nzengue Y; Steiman R; Garrel C; Lefèbvre E; Guiraud P
    Toxicology; 2008 Jan; 243(1-2):193-206. PubMed ID: 18061332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Band 3 tyr-phosphorylation in normal and glucose-6-phospate dehydrogenase-deficient human erythrocytes.
    Bordin L; Zen F; Ion-Popa F; Barbetta M; Baggio B; Clari G
    Mol Membr Biol; 2005; 22(5):411-20. PubMed ID: 16308275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance.
    Tang HY; Ho HY; Wu PR; Chen SH; Kuypers FA; Cheng ML; Chiu DT
    Antioxid Redox Signal; 2015 Mar; 22(9):744-59. PubMed ID: 25556665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of decreased erythrocyte deformability and survival in glucose 6-phosphate dehydrogenase mutants.
    Flynn TP; Johnson GJ; Allen DW
    Prog Clin Biol Res; 1981; 56():231-49. PubMed ID: 7330011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.