BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19497580)

  • 1. Density gradients in packed columns: I. Effects of density gradients on retention and separation speed.
    Baker LR; Stark MA; Orton AW; Horn BA; Goates SR
    J Chromatogr A; 2009 Jul; 1216(29):5588-93. PubMed ID: 19497580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of carbon dioxide mobile phase density profiles in packed capillary columns by Raman microscopy.
    Baker LR; Orton AW; Goates SR; Horn BA
    Appl Spectrosc; 2009 Jan; 63(1):108-11. PubMed ID: 19146727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density gradients in packed columns: II. Effects of density gradients on efficiency in supercritical fluid separations.
    Baker LR; Orton AW; Stark MA; Goates SR
    J Chromatogr A; 2009 Jul; 1216(29):5594-9. PubMed ID: 19539294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of thermal processes in high pressure liquid chromatography: II. Thermal heterogeneity at very high pressures.
    Kaczmarski K; Gritti F; Kostka J; Guiochon G
    J Chromatogr A; 2009 Sep; 1216(38):6575-86. PubMed ID: 19665717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency of supercritical fluid chromatography columns in different thermal environments.
    Kaczmarski K; Poe DP; Tarafder A; Guiochon G
    J Chromatogr A; 2013 May; 1291():155-73. PubMed ID: 23598158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical modeling of elution peak profiles in supercritical fluid chromatography. Part I--elution of an unretained tracer.
    Kaczmarski K; Poe DP; Guiochon G
    J Chromatogr A; 2010 Oct; 1217(42):6578-87. PubMed ID: 20813372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of thermal processes in high pressure liquid chromatography: I. Low pressure onset of thermal heterogeneity.
    Kaczmarski K; Kostka J; Zapała W; Guiochon G
    J Chromatogr A; 2009 Sep; 1216(38):6560-74. PubMed ID: 19640545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of pressure drop, particle size and thermal conditions on retention and efficiency in supercritical fluid chromatography.
    Poe DP; Schroden JJ
    J Chromatogr A; 2009 Nov; 1216(45):7915-26. PubMed ID: 19767007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast supercritical fluid chromatography hydrocarbon group-type separations of diesel fuels using packed and monolithic columns.
    Paproski RE; Cooley J; Lucy CA
    Analyst; 2006 Mar; 131(3):422-8. PubMed ID: 16496052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles.
    Poe DP; Veit D; Ranger M; Kaczmarski K; Tarafder A; Guiochon G
    J Chromatogr A; 2012 Aug; 1250():105-14. PubMed ID: 22521956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of viscous friction heating on the efficiency of columns operated under very high pressures.
    Gritti F; Martin M; Guiochon G
    Anal Chem; 2009 May; 81(9):3365-84. PubMed ID: 19361228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure, temperature and density drops along supercritical fluid chromatography columns. II. Theoretical simulation for neat carbon dioxide and columns packed with 3-μm particles.
    Kaczmarski K; Poe DP; Tarafder A; Guiochon G
    J Chromatogr A; 2012 Aug; 1250():115-23. PubMed ID: 22687711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the thermal environment on the efficiency of packed columns in supercritical fluid chromatography.
    Zauner J; Lusk R; Koski S; Poe DP
    J Chromatogr A; 2012 Nov; 1266():149-57. PubMed ID: 23107122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of the isopycnic plots in designing operations of supercritical fluid chromatography. V. Pressure and density drops using mixtures of carbon dioxide and methanol as the mobile phase.
    Tarafder A; Kaczmarski K; Poe DP; Guiochon G
    J Chromatogr A; 2012 Oct; 1258():136-51. PubMed ID: 22935727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of thermal processes in very high pressure liquid chromatography for column immersed in a water bath: Application of the selected models.
    Kostka J; Gritti F; Guiochon G; Kaczmarski K
    J Chromatogr A; 2010 Jul; 1217(28):4704-12. PubMed ID: 20627254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Very high-pressure capillary liquid chromatography assisted by voltage.
    Cintrón JM; Colón LA
    J Chromatogr A; 2006 Feb; 1106(1-2):131-8. PubMed ID: 16443458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention mechanisms in super/subcritical fluid chromatography on packed columns.
    Lesellier E
    J Chromatogr A; 2009 Mar; 1216(10):1881-90. PubMed ID: 18996534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methacrylate monolithic capillary columns for gradient peptide separations.
    Pruim P; Ohman M; Huo Y; Schoenmakers PJ; Kok WT
    J Chromatogr A; 2008 Oct; 1208(1-2):109-15. PubMed ID: 18771770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of the isopycnic plots in designing operations of supercritical fluid chromatography: IV. Pressure and density drops along columns.
    Tarafder A; Kaczmarski K; Ranger M; Poe DP; Guiochon G
    J Chromatogr A; 2012 May; 1238():132-45. PubMed ID: 22503621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical modeling of the elution peak profiles of retained solutes in supercritical fluid chromatography.
    Kaczmarski K; Poe DP; Guiochon G
    J Chromatogr A; 2011 Sep; 1218(37):6531-9. PubMed ID: 21821256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.