These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 19497804)

  • 1. Light-addressed stimulation under Ca(2+) imaging of cultured neurons.
    Suzurikawa J; Nakao M; Jimbo Y; Kanzaki R; Takahashi H
    IEEE Trans Biomed Eng; 2009 Nov; 56(11):2660-5. PubMed ID: 19497804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-addressable planar electrode with hydrogenated amorphous silicon and low-conductive passivation layer for stimulation of cultured neurons.
    Suzurikawa J; Takahashi H; Takayama Y; Warisawa S; Mitsuishi M; Nakao M; Jimbo Y
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():648-51. PubMed ID: 17945992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-addressed single-neuron stimulation in dissociated neuronal cultures with sparse expression of ChR2.
    Takahashi H; Sakurai T; Sakai H; Bakkum DJ; Suzurikawa J; Kanzaki R
    Biosystems; 2012 Feb; 107(2):106-12. PubMed ID: 22019848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical stimulation of cultured neurons using a simply patterned indium-tin-oxide (ITO) glass electrode.
    Tanamoto R; Shindo Y; Miki N; Matsumoto Y; Hotta K; Oka K
    J Neurosci Methods; 2015 Sep; 253():272-8. PubMed ID: 26185873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A system for MEA-based multisite stimulation.
    Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strengthening of synchronized activity by tetanic stimulation in cortical cultures: application of planar electrode arrays.
    Jimbo Y; Robinson HP; Kawana A
    IEEE Trans Biomed Eng; 1998 Nov; 45(11):1297-304. PubMed ID: 9805828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion conducting polymer microelectrodes for interfacing with neural networks.
    Nyberg T; Shimada A; Torimitsu K
    J Neurosci Methods; 2007 Feb; 160(1):16-25. PubMed ID: 17000006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A versatile all-channel stimulator for electrode arrays, with real-time control.
    Wagenaar DA; Potter SM
    J Neural Eng; 2004 Mar; 1(1):39-45. PubMed ID: 15876621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model retinal interface based on directed neuronal growth for single cell stimulation.
    Mehenti NZ; Tsien GS; Leng T; Fishman HA; Bent SF
    Biomed Microdevices; 2006 Jun; 8(2):141-50. PubMed ID: 16688573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord.
    Meacham KW; Giuly RJ; Guo L; Hochman S; DeWeerth SP
    Biomed Microdevices; 2008 Apr; 10(2):259-69. PubMed ID: 17914674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-property relationships in the optimization of polysilicon thin films for electrical recording/stimulation of single neurons.
    Saha R; Muthuswamy J
    Biomed Microdevices; 2007 Jun; 9(3):345-60. PubMed ID: 17203379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CMOS image sensor integrated with micro-LED and multielectrode arrays for the patterned photostimulation and multichannel recording of neuronal tissue.
    Nakajima A; Kimura H; Sawadsaringkarn Y; Maezawa Y; Kobayashi T; Noda T; Sasagawa K; Tokuda T; Ishikawa Y; Shiosaka S; Ohta J
    Opt Express; 2012 Mar; 20(6):6097-108. PubMed ID: 22418489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-chip microelectronic system to interface with living cells.
    Heer F; Hafizovic S; Ugniwenko T; Frey U; Franks W; Perriard E; Perriard JC; Blau A; Ziegler C; Hierlemann A
    Biosens Bioelectron; 2007 May; 22(11):2546-53. PubMed ID: 17097869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous measurement of intracellular calcium and electrical activity from patterned neural networks in culture.
    Jimbo Y; Robinson HP; Kawana A
    IEEE Trans Biomed Eng; 1993 Aug; 40(8):804-10. PubMed ID: 8258447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of extracellular stimulation of nerve cells on an electrolyte-oxide-semiconductor capacitor.
    Schoen I; Fromherz P
    Biophys J; 2007 Feb; 92(3):1096-111. PubMed ID: 17098803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution extracellular stimulation of dispersed hippocampal culture with high-density CMOS multielectrode array based on non-Faradaic electrodes.
    Lei N; Ramakrishnan S; Shi P; Orcutt JS; Yuste R; Kam LC; Shepard KL
    J Neural Eng; 2011 Aug; 8(4):044003. PubMed ID: 21725154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical properties of a light-addressable microelectrode chip with high electrode density for extracellular stimulation and recording of excitable cells.
    Bucher V; Brunner B; Leibrock C; Schubert M; Nisch W
    Biosens Bioelectron; 2001 May; 16(3):205-10. PubMed ID: 11339999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro.
    Xiang G; Pan L; Huang L; Yu Z; Song X; Cheng J; Xing W; Zhou Y
    Biosens Bioelectron; 2007 May; 22(11):2478-84. PubMed ID: 17071071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-directed electrical stimulation of neurons cultured on silicon wafers.
    Starovoytov A; Choi J; Seung HS
    J Neurophysiol; 2005 Feb; 93(2):1090-8. PubMed ID: 15385589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation with a low-amplitude, digitized synaptic signal to invoke robust activity within neuronal networks on multielectrode arrays.
    Zemianek JM; Serra M; Guaraldi M; Shea TB
    Biotechniques; 2012 Mar; 52(3):177-82. PubMed ID: 22401551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.