BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 19497807)

  • 1. A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography.
    Zhang K; Wang W; Han J; Kang JU
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2318-21. PubMed ID: 19497807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common-path low-coherence interferometry fiber-optic sensor guided microincision.
    Zhang K; Kang JU
    J Biomed Opt; 2011 Sep; 16(9):095003. PubMed ID: 21950912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Intraoperative OCT in ophthalmic microsurgery].
    Stanzel BV; Gagalick A; Brinkmann CK; Brinken R; Herwig MC; Holz FG
    Ophthalmologe; 2016 May; 113(5):435-42. PubMed ID: 27126797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of the dual SMART micro-surgical system using common-path swept source optical coherence tomography.
    Park HC; Yeo CB; Gehlbach PL; Song C
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5-8. PubMed ID: 26736187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography.
    Huang Y; Ibrahim Z; Tong D; Zhu S; Mao Q; Pang J; Andree Lee WP; Brandacher G; Kang JU
    J Biomed Opt; 2013 Nov; 18(11):111404. PubMed ID: 23856833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation.
    Song S; Huang Z; Wang RK
    J Biomed Opt; 2013 Dec; 18(12):121505. PubMed ID: 24150274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical surface tracking using a stereoscopic operating microscope.
    Sun H; Roberts DW; Farid H; Wu Z; Hartov A; Paulsen KD
    Neurosurgery; 2005 Jan; 56(1 Suppl):86-97; discussion 86-97. PubMed ID: 15799796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography.
    Carrasco-Zevallos OM; Keller B; Viehland C; Shen L; Waterman G; Todorich B; Shieh C; Hahn P; Farsiu S; Kuo AN; Toth CA; Izatt JA
    Sci Rep; 2016 Aug; 6():31689. PubMed ID: 27538478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CNN-based CP-OCT sensor integrated with a subretinal injector for retinal boundary tracking and injection guidance.
    Lee S; Kang J
    J Biomed Opt; 2021 Jun; 26(6):. PubMed ID: 34196137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Near Infrared Virtual Intraoperative Surgical Photoacoustic Optical Coherence Tomography.
    Lee D; Lee C; Kim S; Zhou Q; Kim J; Kim C
    Sci Rep; 2016 Oct; 6():35176. PubMed ID: 27731390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast 5DOF needle tracking in iOCT.
    Weiss J; Rieke N; Nasseri MA; Maier M; Eslami A; Navab N
    Int J Comput Assist Radiol Surg; 2018 Jun; 13(6):787-796. PubMed ID: 29603065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Microscope-Integrated OCT on Ophthalmology Resident Performance of Anterior Segment Surgical Maneuvers in Model Eyes.
    Todorich B; Shieh C; DeSouza PJ; Carrasco-Zevallos OM; Cunefare DL; Stinnett SS; Izatt JA; Farsiu S; Mruthyunjaya P; Kuo AN; Toth CA
    Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT146-53. PubMed ID: 27409466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery.
    Carrasco-Zevallos OM; Keller B; Viehland C; Shen L; Seider MI; Izatt JA; Toth CA
    Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT37-50. PubMed ID: 27409495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention.
    Huang Y; Liu X; Song C; Kang JU
    Biomed Opt Express; 2012 Dec; 3(12):3105-18. PubMed ID: 23243562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction of motion artifacts in endoscopic optical coherence tomography and autofluorescence images based on azimuthal en face image registration.
    Abouei E; Lee AMD; Pahlevaninezhad H; Hohert G; Cua M; Lane P; Lam S; MacAulay C
    J Biomed Opt; 2018 Jan; 23(1):1-13. PubMed ID: 29302954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures.
    Thrane L; Frosz MH; Jørgensen TM; Tycho A; Yura HT; Andersen PE
    Opt Lett; 2004 Jul; 29(14):1641-3. PubMed ID: 15309845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraoperative Optical Coherence Tomography in Vitreoretinal Surgery.
    Ung C; Miller JB
    Semin Ophthalmol; 2019; 34(4):312-316. PubMed ID: 31240975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Algorithmic tools for real-time microsurgery simulation.
    Brown J; Sorkin S; Latombe JC; Montgomery K; Stephanides M
    Med Image Anal; 2002 Sep; 6(3):289-300. PubMed ID: 12270233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intravascular ultrasound versus optical coherence tomography guidance.
    Waksman R; Kitabata H; Prati F; Albertucci M; Mintz GS
    J Am Coll Cardiol; 2013 Oct; 62(17 Suppl):S32-40. PubMed ID: 24135661
    [No Abstract]   [Full Text] [Related]  

  • 20. Evaluation of a completely robotized neurosurgical operating microscope.
    Kantelhardt SR; Finke M; Schweikard A; Giese A
    Neurosurgery; 2013 Jan; 72 Suppl 1():19-26. PubMed ID: 23254808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.