These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19497810)

  • 1. Biophysical model of an auditory nerve fiber with a novel adaptation component.
    Woo J; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2177-80. PubMed ID: 19497810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of the electrically stimulated cochlear neuron: modeling adaptation to trains of electric pulses.
    Woo J; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2009 May; 56(5):1348-59. PubMed ID: 19473930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):590-603. PubMed ID: 15072213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic population model for electrical stimulation of the auditory nerve.
    Imennov NS; Rubinstein JT
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2493-501. PubMed ID: 19304476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of HCN and KLT ion channels on adaptation and refractoriness in a stochastic auditory nerve model.
    Negm MH; Bruce IC
    IEEE Trans Biomed Eng; 2014 Nov; 61(11):2749-59. PubMed ID: 24893366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dependence of auditory nerve rate adaptation on electric stimulus parameters, electrode position, and fiber diameter: a computer model study.
    Woo J; Miller CA; Abbas PJ
    J Assoc Res Otolaryngol; 2010 Jun; 11(2):283-96. PubMed ID: 20033248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encoding of information into neural spike trains in an auditory nerve fiber model with electric stimuli in the presence of a pseudospontaneous activity.
    Mino H
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):360-9. PubMed ID: 17355047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictions of psychophysical measurements for sinusoidal amplitude modulated (SAM) pulse-train stimuli from a stochastic model.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1389-98. PubMed ID: 17694859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation.
    Mino H; Rubinstein JT; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):13-20. PubMed ID: 14723489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers.
    Neubauer H; Heil P
    Brain Res; 2008 Jul; 1220():208-23. PubMed ID: 17936252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes across time in spike rate and spike amplitude of auditory nerve fibers stimulated by electric pulse trains.
    Zhang F; Miller CA; Robinson BK; Abbas PJ; Hu N
    J Assoc Res Otolaryngol; 2007 Sep; 8(3):356-72. PubMed ID: 17562109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural masking by sub-threshold electric stimuli: animal and computer model results.
    Miller CA; Woo J; Abbas PJ; Hu N; Robinson BK
    J Assoc Res Otolaryngol; 2011 Apr; 12(2):219-32. PubMed ID: 21080206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrode independence in intraneural cochlear nerve stimulation.
    Badi AN; Owa AO; Shelton C; Normann RA
    Otol Neurotol; 2007 Jan; 28(1):16-24. PubMed ID: 17195741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction and control of neural responses to pulsatile electrical stimulation.
    Campbell LJ; Sly DJ; O'Leary SJ
    J Neural Eng; 2012 Apr; 9(2):026023. PubMed ID: 22419164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in auditory nerve responses across the duration of sinusoidally amplitude-modulated electric pulse-train stimuli.
    Hu N; Miller CA; Abbas PJ; Robinson BK; Woo J
    J Assoc Res Otolaryngol; 2010 Dec; 11(4):641-56. PubMed ID: 20632064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of monophasic and biphasic electrical stimulation of nerve.
    Rubinstein JT; Miller CA; Mino H; Abbas PJ
    IEEE Trans Biomed Eng; 2001 Oct; 48(10):1065-70. PubMed ID: 11585029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes across time in the temporal responses of auditory nerve fibers stimulated by electric pulse trains.
    Miller CA; Hu N; Zhang F; Robinson BK; Abbas PJ
    J Assoc Res Otolaryngol; 2008 Mar; 9(1):122-37. PubMed ID: 18204987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of the auditory nerve to sinusoidal electrical stimulation: effects of high-rate pulse trains.
    Runge-Samuelson CL; Abbas PJ; Rubinstein JT; Miller CA; Robinson BK
    Hear Res; 2004 Aug; 194(1-2):1-13. PubMed ID: 15276671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous activity of auditory nerve fibers in the barn owl (Tyto alba): analyses of interspike interval distributions.
    Neubauer H; Köppl C; Heil P
    J Neurophysiol; 2009 Jun; 101(6):3169-91. PubMed ID: 19357334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers.
    Heil P; Neubauer H; Brown M; Irvine DR
    Hear Res; 2008 Apr; 238(1-2):25-38. PubMed ID: 18077116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.