These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19497810)

  • 21. Selective activation of cat primary auditory cortex by way of direct intraneural auditory nerve stimulation.
    Kim SJ; Badi AN; Normann RA
    Laryngoscope; 2007 Jun; 117(6):1053-62. PubMed ID: 17545868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Threshold predictions of different pulse shapes using a human auditory nerve fibre model containing persistent sodium and slow potassium currents.
    Smit JE; Hanekom T; van Wieringen A; Wouters J; Hanekom JJ
    Hear Res; 2010 Oct; 269(1-2):12-22. PubMed ID: 20708672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of I(h) and I(KLT) on the response of the auditory nerve to electrical stimulation in a stochastic Hodgkin-Huxley model.
    Negm MH; Bruce IC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5539-42. PubMed ID: 19163972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An empirically based model of the electrically evoked compound action potential.
    Miller CA; Abbas PJ; Rubinstein JT
    Hear Res; 1999 Sep; 135(1-2):1-18. PubMed ID: 10491949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains.
    Nourski KV; Abbas PJ; Miller CA; Robinson BK; Jeng FC
    Hear Res; 2005 Apr; 202(1-2):141-53. PubMed ID: 15811706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Auditory nerve fiber responses to combined acoustic and electric stimulation.
    Miller CA; Abbas PJ; Robinson BK; Nourski KV; Zhang F; Jeng FC
    J Assoc Res Otolaryngol; 2009 Sep; 10(3):425-45. PubMed ID: 19205803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A model of the stimulation of a nerve fiber by electromagnetic induction.
    Roth BJ; Basser PJ
    IEEE Trans Biomed Eng; 1990 Jun; 37(6):588-97. PubMed ID: 2354840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Auditory nerve responses to monophasic and biphasic electric stimuli.
    Miller CA; Robinson BK; Rubinstein JT; Abbas PJ; Runge-Samuelson CL
    Hear Res; 2001 Jan; 151(1-2):79-94. PubMed ID: 11124454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A stochastic model of the electrically stimulated auditory nerve: single-pulse response.
    Bruce IC; White MW; Irlicht LS; O'Leary SJ; Dynes S; Javel E; Clark GM
    IEEE Trans Biomed Eng; 1999 Jun; 46(6):617-29. PubMed ID: 10356868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling axon membranes for functional electrical stimulation.
    Rattay F; Aberham M
    IEEE Trans Biomed Eng; 1993 Dec; 40(12):1201-9. PubMed ID: 8125496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of the rates of pseudo-spontaneous spikes generated by electric stimuli on information transmission in an auditory nerve fiber model.
    Kumsa P; Mino H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5246-9. PubMed ID: 24110919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Model of Electrically Stimulated Auditory Nerve Fiber Responses with Peripheral and Central Sites of Spike Generation.
    Joshi SN; Dau T; Epp B
    J Assoc Res Otolaryngol; 2017 Apr; 18(2):323-342. PubMed ID: 28054149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Response properties of the refractory auditory nerve fiber.
    Miller CA; Abbas PJ; Robinson BK
    J Assoc Res Otolaryngol; 2001 Sep; 2(3):216-32. PubMed ID: 11669395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spiral ganglion cell site of excitation I: comparison of scala tympani and intrameatal electrode responses.
    Cartee LA; Miller CA; van den Honert C
    Hear Res; 2006 May; 215(1-2):10-21. PubMed ID: 16624511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Practical model description of peripheral neural excitation in cochlear implant recipients: 1. Growth of loudness and ECAP amplitude with current.
    Cohen LT
    Hear Res; 2009 Jan; 247(2):87-99. PubMed ID: 19063956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An introduction to the biophysics of the electrically evoked compound action potential.
    Rubinstein JT
    Int J Audiol; 2004 Dec; 43 Suppl 1():S3-9. PubMed ID: 15732375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning properties of turtle auditory nerve fibers: evidence for suppression and adaptation.
    Sneary MG; Lewis ER
    Hear Res; 2007 Jun; 228(1-2):22-30. PubMed ID: 17331685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peristimulus Time Responses Predict Adaptation and Spontaneous Firing of Auditory-Nerve Fibers: From Rodents Data to Humans.
    Huet A; Batrel C; Dubernard X; Kleiber JC; Desmadryl G; Venail F; Liberman MC; Nouvian R; Puel JL; Bourien J
    J Neurosci; 2022 Mar; 42(11):2253-2267. PubMed ID: 35078924
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Representation of the vowel /epsilon/ in normal and impaired auditory nerve fibers: model predictions of responses in cats.
    Zilany MS; Bruce IC
    J Acoust Soc Am; 2007 Jul; 122(1):402-17. PubMed ID: 17614499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type.
    Schaette R; Kempter R
    Hear Res; 2008 Jun; 240(1-2):57-72. PubMed ID: 18396381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.