These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

24 related articles for article (PubMed ID: 19497821)

  • 1. Stance-Control Knee-Ankle-Foot Orthoses for People With Knee Instability: A Health Technology Assessment.
    Ontario Health (Quality)
    Ont Health Technol Assess Ser; 2021; 21(11):1-96. PubMed ID: 34484485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, development, and evaluation of a local sensor-based gait phase recognition system using a logistic model decision tree for orthosis-control.
    Farah JD; Baddour N; Lemaire ED
    J Neuroeng Rehabil; 2019 Feb; 16(1):22. PubMed ID: 30709363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of Inter-Subject Training for Hidden Markov Models Applied to Gait Phase Detection in Children with Cerebral Palsy.
    Taborri J; Scalona E; Palermo E; Rossi S; Cappa P
    Sensors (Basel); 2015 Sep; 15(9):24514-29. PubMed ID: 26404309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel HMM distributed classifier for the detection of gait phases by means of a wearable inertial sensor network.
    Taborri J; Rossi S; Palermo E; Patanè F; Cappa P
    Sensors (Basel); 2014 Sep; 14(9):16212-34. PubMed ID: 25184488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and evaluation of a stance-control knee-ankle-foot orthosis knee joint.
    Yakimovich T; Kofman J; Lemaire ED
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):361-9. PubMed ID: 17009496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of stance control orthoses on gait characteristics and energy expenditure in knee-ankle-foot orthosis users.
    Davis PC; Bach TM; Pereira DM
    Prosthet Orthot Int; 2010 Jun; 34(2):206-15. PubMed ID: 20470059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and biomechanical analysis of a linear piston design for angular-velocity-based orthotic control.
    Lemaire ED; Samadi R; Goudreau L; Kofman J
    J Rehabil Res Dev; 2013; 50(1):43-52. PubMed ID: 23516082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering design review of stance-control knee-ankle-foot orthoses.
    Yakimovich T; Lemaire ED; Kofman J
    J Rehabil Res Dev; 2009; 46(2):257-67. PubMed ID: 19533539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angular-velocity control approach for stance-control orthoses.
    Lemaire ED; Goudreau L; Yakimovich T; Kofman J
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):497-503. PubMed ID: 19497821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State of the art review of knee-ankle-foot orthoses.
    Tian F; Hefzy MS; Elahinia M
    Ann Biomed Eng; 2015 Feb; 43(2):427-41. PubMed ID: 25631201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Review of the design of artificial knee joint simulation test].
    Li F; Li Y; Wang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Apr; 27(2):448-52. PubMed ID: 20481337
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.