These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 19497836)

  • 1. Class discovery from gene expression data based on perturbation and cluster ensemble.
    Yu Z; Wong HS
    IEEE Trans Nanobioscience; 2009 Jun; 8(2):147-60. PubMed ID: 19497836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graph-based consensus clustering for class discovery from gene expression data.
    Yu Z; Wong HS; Wang H
    Bioinformatics; 2007 Nov; 23(21):2888-96. PubMed ID: 17872912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of self-organizing oscillator networks for use in clustering microarray data.
    Salem SA; Jack LB; Nandi AK
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):65-79. PubMed ID: 18334457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small, fuzzy and interpretable gene expression based classifiers.
    Vinterbo SA; Kim EY; Ohno-Machado L
    Bioinformatics; 2005 May; 21(9):1964-70. PubMed ID: 15661797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independent component analysis-based penalized discriminant method for tumor classification using gene expression data.
    Huang DS; Zheng CH
    Bioinformatics; 2006 Aug; 22(15):1855-62. PubMed ID: 16709589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE.
    Niijima S; Kuhara S
    BMC Bioinformatics; 2006 Dec; 7():543. PubMed ID: 17187691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LCE: a link-based cluster ensemble method for improved gene expression data analysis.
    Iam-on N; Boongoen T; Garrett S
    Bioinformatics; 2010 Jun; 26(12):1513-9. PubMed ID: 20444838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knowledge based cluster ensemble for cancer discovery from biomolecular data.
    Yu Z; Wongb HS; You J; Yang Q; Liao H
    IEEE Trans Nanobioscience; 2011 Jun; 10(2):76-85. PubMed ID: 21742574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing the gene regulation-level representation of microarray data for cancer classification.
    Wong HS; Wang HQ
    J Biomed Inform; 2008 Feb; 41(1):95-105. PubMed ID: 17499026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust prostate cancer marker genes emerge from direct integration of inter-study microarray data.
    Xu L; Tan AC; Naiman DQ; Geman D; Winslow RL
    Bioinformatics; 2005 Oct; 21(20):3905-11. PubMed ID: 16131522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An iterative data mining approach for mining overlapping coexpression patterns in noisy gene expression data.
    Ma PC; Chan KC
    IEEE Trans Nanobioscience; 2009 Sep; 8(3):252-8. PubMed ID: 19605326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustering threshold gradient descent regularization: with applications to microarray studies.
    Ma S; Huang J
    Bioinformatics; 2007 Feb; 23(4):466-72. PubMed ID: 17182700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microarray data clustering based on temporal variation: FCV with TSD preclustering.
    Möller-Levet CS; Cho KH; Wolkenhauer O
    Appl Bioinformatics; 2003; 2(1):35-45. PubMed ID: 15130832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomarker discovery across annotated and unannotated microarray datasets using semi-supervised learning.
    Harris C; Ghaffari N
    BMC Genomics; 2008 Sep; 9 Suppl 2(Suppl 2):S7. PubMed ID: 18831798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structured polychotomous machine diagnosis of multiple cancer types using gene expression.
    Koo JY; Sohn I; Kim S; Lee JW
    Bioinformatics; 2006 Apr; 22(8):950-8. PubMed ID: 16452113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Markers improve clustering of CGH data.
    Liu J; Ranka S; Kahveci T
    Bioinformatics; 2007 Feb; 23(4):450-7. PubMed ID: 17150994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FM-test: a fuzzy-set-theory-based approach to differential gene expression data analysis.
    Liang LR; Lu S; Wang X; Lu Y; Mandal V; Patacsil D; Kumar D
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S7. PubMed ID: 17217525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combination of rough-based feature selection and RBF neural network for classification using gene expression data.
    Chiang JH; Ho SH
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):91-9. PubMed ID: 18334459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensemble dependence model for classification and prediction of cancer and normal gene expression data.
    Qiu P; Wang ZJ; Liu KJ
    Bioinformatics; 2005 Jul; 21(14):3114-21. PubMed ID: 15879455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Annotation-based distance measures for patient subgroup discovery in clinical microarray studies.
    Lottaz C; Toedling J; Spang R
    Bioinformatics; 2007 Sep; 23(17):2256-64. PubMed ID: 17586546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.