These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Systemic growth of F. graminearum in wheat plants and related accumulation of deoxynivalenol. Moretti A; Panzarini G; Somma S; Campagna C; Ravaglia S; Logrieco AF; Solfrizzo M Toxins (Basel); 2014 Apr; 6(4):1308-24. PubMed ID: 24727554 [TBL] [Abstract][Full Text] [Related]
7. The Fungicidal Activity of Tebuconazole Enantiomers against Fusarium graminearum and Its Selective Effect on DON Production under Different Conditions. Diao X; Han Y; Liu C J Agric Food Chem; 2018 Apr; 66(14):3637-3643. PubMed ID: 29562133 [TBL] [Abstract][Full Text] [Related]
8. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: Inhibition of DON biosynthesis and induction of host resistance. Li J; Duan Y; Bian C; Pan X; Yao C; Wang J; Zhou M Pestic Biochem Physiol; 2019 Jan; 153():152-160. PubMed ID: 30744889 [TBL] [Abstract][Full Text] [Related]
9. TaFROG Encodes a Pooideae Orphan Protein That Interacts with SnRK1 and Enhances Resistance to the Mycotoxigenic Fungus Fusarium graminearum. Perochon A; Jianguang J; Kahla A; Arunachalam C; Scofield SR; Bowden S; Wallington E; Doohan FM Plant Physiol; 2015 Dec; 169(4):2895-906. PubMed ID: 26508775 [TBL] [Abstract][Full Text] [Related]
11. Fusarium graminearum TRI14 is required for high virulence and DON production on wheat but not for DON synthesis in vitro. Dyer RB; Plattner RD; Kendra DF; Brown DW J Agric Food Chem; 2005 Nov; 53(23):9281-7. PubMed ID: 16277434 [TBL] [Abstract][Full Text] [Related]
13. Biocontrol of Abbas A; Yli-Mattila T Toxins (Basel); 2022 Apr; 14(5):. PubMed ID: 35622546 [TBL] [Abstract][Full Text] [Related]
14. Deoxynivalenol-nonproducing fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Bai GH; Desjardins AE; Plattner RD Mycopathologia; 2002; 153(2):91-8. PubMed ID: 12000132 [TBL] [Abstract][Full Text] [Related]
15. Developing kernel and rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection. Ilgen P; Hadeler B; Maier FJ; Schäfer W Mol Plant Microbe Interact; 2009 Aug; 22(8):899-908. PubMed ID: 19589066 [TBL] [Abstract][Full Text] [Related]
16. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Qi PF; Johnston A; Balcerzak M; Rocheleau H; Harris LJ; Long XY; Wei YM; Zheng YL; Ouellet T Fungal Biol; 2012 Mar; 116(3):413-26. PubMed ID: 22385623 [TBL] [Abstract][Full Text] [Related]
17. Q-SNARE protein FgSyn8 plays important role in growth, DON production and pathogenicity of Fusarium graminearum. Adnan M; Islam W; Noman A; Hussain A; Anwar M; Khan MU; Akram W; Ashraf MF; Raza MF Microb Pathog; 2020 Mar; 140():103948. PubMed ID: 31874229 [TBL] [Abstract][Full Text] [Related]
18. Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Gale LR; Harrison SA; Ward TJ; O'Donnell K; Milus EA; Gale SW; Kistler HC Phytopathology; 2011 Jan; 101(1):124-34. PubMed ID: 20822434 [TBL] [Abstract][Full Text] [Related]
19. The Golgin Protein RUD3 Regulates Fusarium graminearum Growth and Virulence. Wang C; Wang Y; Zhang L; Yin Z; Liang Y; Chen L; Zou S; Dong H Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33452023 [TBL] [Abstract][Full Text] [Related]