BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19498394)

  • 1. Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character.
    Aldaye FA; Lo PK; Karam P; McLaughlin CK; Cosa G; Sleiman HF
    Nat Nanotechnol; 2009 Jun; 4(6):349-52. PubMed ID: 19498394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic DNA Nanotubes: Reversible Switching between Single and Double-Stranded Forms, and Effect of Base Deletions.
    Rahbani JF; Hariri AA; Cosa G; Sleiman HF
    ACS Nano; 2015 Dec; 9(12):11898-908. PubMed ID: 26556531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Templated synthesis of DNA nanotubes with controlled, predetermined lengths.
    Lo PK; Altvater F; Sleiman HF
    J Am Chem Soc; 2010 Aug; 132(30):10212-4. PubMed ID: 20662492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks.
    Valero J; Pal N; Dhakal S; Walter NG; Famulok M
    Nat Nanotechnol; 2018 Jun; 13(6):496-503. PubMed ID: 29632399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small circular DNA molecules act as rigid motifs to build DNA nanotubes.
    Zheng H; Xiao M; Yan Q; Ma Y; Xiao SJ
    J Am Chem Soc; 2014 Jul; 136(29):10194-7. PubMed ID: 25000226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of metal-DNA triangles and DNA nanotubes with synthetic junctions.
    Yang H; Lo PK; McLaughlin CK; Hamblin GD; Aldaye FA; Sleiman HF
    Methods Mol Biol; 2011; 749():33-47. PubMed ID: 21674363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancing Wireframe DNA Nanostructures Using Single-Molecule Fluorescence Microscopy Techniques.
    Platnich CM; Hariri AA; Sleiman HF; Cosa G
    Acc Chem Res; 2019 Nov; 52(11):3199-3210. PubMed ID: 31675207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The construction of DNA molecules of figure-eight structure.
    Nir H; Eichen Y; Schuster G
    Anal Biochem; 2005 Sep; 344(1):86-91. PubMed ID: 16039974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids.
    Lustig SR; Jagota A; Khripin C; Zheng M
    J Phys Chem B; 2005 Feb; 109(7):2559-66. PubMed ID: 16851257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loading and selective release of cargo in DNA nanotubes with longitudinal variation.
    Lo PK; Karam P; Aldaye FA; McLaughlin CK; Hamblin GD; Cosa G; Sleiman HF
    Nat Chem; 2010 Apr; 2(4):319-28. PubMed ID: 21124515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and synthesis of pleated DNA origami nanotubes with adjustable diameters.
    Berengut JF; Berengut JC; Doye JPK; Prešern D; Kawamoto A; Ruan J; Wainwright MJ; Lee LK
    Nucleic Acids Res; 2019 Dec; 47(22):11963-11975. PubMed ID: 31728524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction, DNA wrapping and cleavage of a carbon nanotube-polypseudorotaxane conjugate.
    Chen Y; Yu L; Feng XZ; Hou S; Liu Y
    Chem Commun (Camb); 2009 Jul; (27):4106-8. PubMed ID: 19568648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of DNA nanotubes with controllable diameters.
    Wilner OI; Orbach R; Henning A; Teller C; Yehezkeli O; Mertig M; Harries D; Willner I
    Nat Commun; 2011 Nov; 2():540. PubMed ID: 22086340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and characterization of programmable DNA nanotubes.
    Rothemund PW; Ekani-Nkodo A; Papadakis N; Kumar A; Fygenson DK; Winfree E
    J Am Chem Soc; 2004 Dec; 126(50):16344-52. PubMed ID: 15600335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programming DNA tube circumferences.
    Yin P; Hariadi RF; Sahu S; Choi HM; Park SH; Labean TH; Reif JH
    Science; 2008 Aug; 321(5890):824-6. PubMed ID: 18687961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalently linked DNA nanotubes.
    Wilner OI; Henning A; Shlyahovsky B; Willner I
    Nano Lett; 2010 Apr; 10(4):1458-65. PubMed ID: 20235526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale structure and microscale stiffness of DNA nanotubes.
    Schiffels D; Liedl T; Fygenson DK
    ACS Nano; 2013 Aug; 7(8):6700-10. PubMed ID: 23879368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimalist Design of Wireframe DNA Nanotubes: Tunable Geometry, Size, Chirality, and Dynamics.
    Luo X; Saliba D; Yang T; Gentile S; Mori K; Islas P; Das T; Bagheri N; Porchetta A; Guarne A; Cosa G; Sleiman HF
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202309869. PubMed ID: 37610293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring the electronic structure of double-walled carbon nanotubes by encapsulating single-stranded DNA.
    Li Y; Kaneko T; Hatakeyama R
    Small; 2010 Mar; 6(6):729-32. PubMed ID: 20183813
    [No Abstract]   [Full Text] [Related]  

  • 20. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires.
    Liu D; Park SH; Reif JH; LaBean TH
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):717-22. PubMed ID: 14709674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.