These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19498394)

  • 41. DNA-nanotube artificial ion channels.
    Harrell CC; Kohli P; Siwy Z; Martin CR
    J Am Chem Soc; 2004 Dec; 126(48):15646-7. PubMed ID: 15571378
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proteins and peptides as biological nanowires: towards biosensing devices.
    Domigan LJ
    Methods Mol Biol; 2013; 996():131-52. PubMed ID: 23504422
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Folding of single-stranded circular DNA into rigid rectangular DNA accelerates its cellular uptake.
    Ohtsuki S; Shiba Y; Maezawa T; Hidaka K; Sugiyama H; Endo M; Takahashi Y; Takakura Y; Nishikawa M
    Nanoscale; 2019 Dec; 11(48):23416-23422. PubMed ID: 31799532
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Production of semiconducting gold-DNA nanowires by application of DC bias.
    Joshi RK; West L; Kumar A; Joshi N; Alwarappan S; Kumar A
    Nanotechnology; 2010 May; 21(18):185604. PubMed ID: 20388979
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Template-synthesized DNA nanotubes.
    Hou S; Wang J; Martin CR
    J Am Chem Soc; 2005 Jun; 127(24):8586-7. PubMed ID: 15954751
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selective placement of templated DNA nanowires between microstructured electrodes.
    Kinsella JM; Ivanisevic A
    Int J Nanomedicine; 2006; 1(2):219-22. PubMed ID: 17722539
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Well-defined organic nanotubes from multicomponent bottlebrush copolymers.
    Huang K; Rzayev J
    J Am Chem Soc; 2009 May; 131(19):6880-5. PubMed ID: 19397329
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy.
    Chao J; Zhang P; Wang Q; Wu N; Zhang F; Hu J; Fan CH; Li B
    Nanoscale; 2016 Mar; 8(11):5842-6. PubMed ID: 26932823
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biofunctionalization and capping of template synthesized nanotubes.
    Hillebrenner H; Buyukserin F; Stewart JD; Martin CR
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2211-21. PubMed ID: 17663233
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Frictionless sliding of single-stranded DNA in a carbon nanotube pore observed by single molecule force spectroscopy.
    Lulevich V; Kim S; Grigoropoulos CP; Noy A
    Nano Lett; 2011 Mar; 11(3):1171-6. PubMed ID: 21275410
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural Description of Chiral E-Tiling DNA Nanotubes with the Chiral Indices (n,m) and Handedness Defined by Microscopic Imaging.
    Feng F; Xiao SJ
    Chembiochem; 2023 Nov; 24(22):e202300460. PubMed ID: 37675822
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Template synthesized nanotubes for biomedical delivery applications.
    Hillebrenner H; Buyukserin F; Stewart JD; Martin CR
    Nanomedicine (Lond); 2006 Jun; 1(1):39-50. PubMed ID: 17716208
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering Synthetic Myosin Filaments Using DNA Nanotubes.
    Sommese RF; Sivaramakrishnan S
    Methods Mol Biol; 2018; 1805():93-101. PubMed ID: 29971714
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Wireframe and tensegrity DNA nanostructures.
    Simmel SS; Nickels PC; Liedl T
    Acc Chem Res; 2014 Jun; 47(6):1691-9. PubMed ID: 24720250
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Atomic structures of RNA nanotubes and their comparison with DNA nanotubes.
    Naskar S; Joshi H; Chakraborty B; Seeman NC; Maiti PK
    Nanoscale; 2019 Aug; 11(31):14863-14878. PubMed ID: 31355845
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Large Chiral Nanotubes Self-Assembled by DNA Bricks.
    Sun S; Yang Y; Li D; Zhu J
    J Am Chem Soc; 2019 Dec; 141(50):19524-19528. PubMed ID: 31789023
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electronic properties of nonideal nanotube materials: helical symmetry breaking in DNA hybrids.
    Rotkin SV
    Annu Rev Phys Chem; 2010; 61():241-61. PubMed ID: 19947884
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selective binding of single-stranded DNA-binding proteins onto DNA molecules adsorbed on single-walled carbon nanotubes.
    Nii D; Hayashida T; Yamaguchi Y; Ikawa S; Shibata T; Umemura K
    Colloids Surf B Biointerfaces; 2014 Sep; 121():325-30. PubMed ID: 24974776
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DNA Nanotubes with Hydrophobic Environments: Toward New Platforms for Guest Encapsulation and Cellular Delivery.
    Rahbani JF; Vengut-Climent E; Chidchob P; Gidi Y; Trinh T; Cosa G; Sleiman HF
    Adv Healthc Mater; 2018 Mar; 7(6):e1701049. PubMed ID: 29356412
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design and Characterization of RNA Nanotubes.
    Stewart JM; Geary C; Franco E
    ACS Nano; 2019 May; 13(5):5214-5221. PubMed ID: 31007017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.