These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 19498517)
1. Frequency measurement of a Sr lattice clock using an SI-second-referenced optical frequency comb linked by a global positioning system (GPS). Hong FL; Takamoto M; Higashi R; Fukuyama Y; Jiang J; Katori H Opt Express; 2005 Jul; 13(14):5253-62. PubMed ID: 19498517 [TBL] [Abstract][Full Text] [Related]
2. An optical lattice clock. Takamoto M; Hong FL; Higashi R; Katori H Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252 [TBL] [Abstract][Full Text] [Related]
3. SI-traceable measurement of an optical frequency at the low 10 Hachisu H; Petit G; Nakagawa F; Hanado Y; Ido T Opt Express; 2017 Apr; 25(8):8511-8523. PubMed ID: 28437930 [TBL] [Abstract][Full Text] [Related]
4. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks. Akamatsu D; Yasuda M; Inaba H; Hosaka K; Tanabe T; Onae A; Hong FL Opt Express; 2014 Apr; 22(7):7898-905. PubMed ID: 24718165 [TBL] [Abstract][Full Text] [Related]
5. Optical frequency measurements with the global positioning system: tests with an iodine-stabilized He-Ne laser. Fox RW; Diddams SA; Bartels A; Hollberg L Appl Opt; 2005 Jan; 44(1):113-20. PubMed ID: 15662892 [TBL] [Abstract][Full Text] [Related]
6. Frequency Ratio of (199)Hg and (87)Sr Optical Lattice Clocks beyond the SI Limit. Yamanaka K; Ohmae N; Ushijima I; Takamoto M; Katori H Phys Rev Lett; 2015 Jun; 114(23):230801. PubMed ID: 26196788 [TBL] [Abstract][Full Text] [Related]
7. Absolute frequency measurement of the 40Ca+ 4s(2)S_(1/2)-3d(2)D_(5/2) clock transition. Chwalla M; Benhelm J; Kim K; Kirchmair G; Monz T; Riebe M; Schindler P; Villar AS; Hänsel W; Roos CF; Blatt R; Abgrall M; Santarelli G; Rovera GD; Laurent P Phys Rev Lett; 2009 Jan; 102(2):023002. PubMed ID: 19257267 [TBL] [Abstract][Full Text] [Related]
8. Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement. Matsubara K; Hachisu H; Li Y; Nagano S; Locke C; Nogami A; Kajita M; Hayasaka K; Ido T; Hosokawa M Opt Express; 2012 Sep; 20(20):22034-41. PubMed ID: 23037353 [TBL] [Abstract][Full Text] [Related]
9. Frequency Comparison of [Formula: see text] Ion Optical Clocks at PTB and NPL via GPS PPP. Leute J; Huntemann N; Lipphardt B; Tamm C; Nisbet-Jones PB; King SA; Godun RM; Jones JM; Margolis HS; Whibberley PB; Wallin A; Merimaa M; Gill P; Peik E IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jul; 63(7):981-5. PubMed ID: 26863657 [TBL] [Abstract][Full Text] [Related]
10. Frequency Measurement System of Optical Clocks Without a Flywheel Oscillator. Fujieda M; Ido T; Hachisu H; Gotoh T; Takiguchi H; Hayasaka K; Toyoda K; Yonegaki K; Tanaka U; Urabe S IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Dec; 63(12):2231-2236. PubMed ID: 27913335 [TBL] [Abstract][Full Text] [Related]
11. Systematic evaluation of a Gao Q; Zhou M; Han C; Li S; Zhang S; Yao Y; Li B; Qiao H; Ai D; Lou G; Zhang M; Jiang Y; Bi Z; Ma L; Xu X Sci Rep; 2018 May; 8(1):8022. PubMed ID: 29789631 [TBL] [Abstract][Full Text] [Related]
12. Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s. Nicholson TL; Martin MJ; Williams JR; Bloom BJ; Bishof M; Swallows MD; Campbell SL; Ye J Phys Rev Lett; 2012 Dec; 109(23):230801. PubMed ID: 23368177 [TBL] [Abstract][Full Text] [Related]
13. Precision frequency measurement of visible intercombination lines of strontium. Ferrari G; Cancio P; Drullinger R; Giusfredi G; Poli N; Prevedelli M; Toninelli C; Tino GM Phys Rev Lett; 2003 Dec; 91(24):243002. PubMed ID: 14683113 [TBL] [Abstract][Full Text] [Related]
14. Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer. Hong FL; Musha M; Takamoto M; Inaba H; Yanagimachi S; Takamizawa A; Watabe K; Ikegami T; Imae M; Fujii Y; Amemiya M; Nakagawa K; Ueda K; Katori H Opt Lett; 2009 Mar; 34(5):692-4. PubMed ID: 19252595 [TBL] [Abstract][Full Text] [Related]
15. A GPS-Referenced Wavelength Standard for High-Precision Displacement Interferometry at λ = 633 nm. Blumröder U; Köchert P; Fröhlich T; Kissinger T; Ortlepp I; Flügge J; Bosse H; Manske E Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772774 [TBL] [Abstract][Full Text] [Related]
16. Compact, Ti:sapphire-based, methane-stabilized optical molecular frequency comb and clock. Benedick A; Tyurikov D; Gubin M; Shewmon R; Chuang I; Kärtner FX Opt Lett; 2009 Jul; 34(14):2168-70. PubMed ID: 19823537 [TBL] [Abstract][Full Text] [Related]
17. Absolute measurement of the 1S0 - 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link. Morzyński P; Bober M; Bartoszek-Bober D; Nawrocki J; Krehlik P; Śliwczyński Ł; Lipiński M; Masłowski P; Cygan A; Dunst P; Garus M; Lisak D; Zachorowski J; Gawlik W; Radzewicz C; Ciuryło R; Zawada M Sci Rep; 2015 Dec; 5():17495. PubMed ID: 26639347 [TBL] [Abstract][Full Text] [Related]