These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 19498520)
1. Evaluation of a parallel FDTD code and application to modeling of light scattering by deformed red blood cells. Brock RS; Hu XH; Yang P; Lu J Opt Express; 2005 Jul; 13(14):5279-92. PubMed ID: 19498520 [TBL] [Abstract][Full Text] [Related]
2. Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method. Lu JQ; Yang P; Hu XH J Biomed Opt; 2005; 10(2):024022. PubMed ID: 15910095 [TBL] [Abstract][Full Text] [Related]
3. Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium. Sun W; Loeb NG; Fu Q Appl Opt; 2002 Sep; 41(27):5728-43. PubMed ID: 12269573 [TBL] [Abstract][Full Text] [Related]
4. Application of the symplectic finite-difference time-domain method to light scattering by small particles. Zhai PW; Kattawar GW; Yang P; Li C Appl Opt; 2005 Mar; 44(9):1650-6. PubMed ID: 15813268 [TBL] [Abstract][Full Text] [Related]
5. Efficient finite-difference time-domain scheme for light scattering by dielectric particles: application to aerosols. Yang P; Liou KN; Mishchenko MI; Gao BC Appl Opt; 2000 Jul; 39(21):3727-37. PubMed ID: 18349948 [TBL] [Abstract][Full Text] [Related]
6. Axial and Nonaxial Migration of Red Blood Cells in a Microtube. Takeishi N; Yamashita H; Omori T; Yokoyama N; Sugihara-Seki M Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683214 [TBL] [Abstract][Full Text] [Related]
7. Numerical simulations of light scattering by red blood cells. Karlsson A; He J; Swartling J; Andersson-Engels S IEEE Trans Biomed Eng; 2005 Jan; 52(1):13-8. PubMed ID: 15651560 [TBL] [Abstract][Full Text] [Related]
8. Acceleration of FDTD mode solver by high-performance computing techniques. Han L; Xi Y; Huang WP Opt Express; 2010 Jun; 18(13):13679-92. PubMed ID: 20588502 [TBL] [Abstract][Full Text] [Related]
9. Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level. Kinnunen M; Kauppila A; Karmenyan A; Myllylä R Biomed Opt Express; 2011 Jul; 2(7):1803-14. PubMed ID: 21750759 [TBL] [Abstract][Full Text] [Related]
10. GPU-accelerated FDTD modeling of radio-frequency field-tissue interactions in high-field MRI. Chi J; Liu F; Weber E; Li Y; Crozier S IEEE Trans Biomed Eng; 2011 Jun; 58(6):1789-96. PubMed ID: 21335302 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells. Gilev KV; Eremina E; Yurkin MA; Maltsev VP Opt Express; 2010 Mar; 18(6):5681-90. PubMed ID: 20389584 [TBL] [Abstract][Full Text] [Related]
12. Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot's finite-difference time-domain methods. Hosokawa A J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1782-9. PubMed ID: 16240836 [TBL] [Abstract][Full Text] [Related]
13. Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach. Guo LX; Li J; Zeng H J Opt Soc Am A Opt Image Sci Vis; 2009 Nov; 26(11):2383-92. PubMed ID: 19884936 [TBL] [Abstract][Full Text] [Related]
14. A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges. Drezek R; Dunn A; Richards-Kortum R Opt Express; 2000 Mar; 6(7):147-57. PubMed ID: 19404346 [TBL] [Abstract][Full Text] [Related]
15. Light scattering from cells: finite-difference time-domain simulations and goniometric measurements. Drezek R; Dunn A; Richards-Kortum R Appl Opt; 1999 Jun; 38(16):3651-61. PubMed ID: 18319970 [TBL] [Abstract][Full Text] [Related]
16. Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary. Li J; Guo LX; Zeng H; Han XB J Opt Soc Am A Opt Image Sci Vis; 2009 Jun; 26(6):1494-502. PubMed ID: 19488189 [TBL] [Abstract][Full Text] [Related]
17. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods. Hosokawa A Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171 [TBL] [Abstract][Full Text] [Related]
18. Wave localized finite-difference-time-domain modelling of scattering of elastic waves within a polycrystalline material. Shivaprasad S; Pandala A; Krishnamurthy CV; Balasubramaniam K J Acoust Soc Am; 2018 Dec; 144(6):3313. PubMed ID: 30599652 [TBL] [Abstract][Full Text] [Related]
19. Effects of red cell shape and orientation on propagation of sound in blood. Ahuja AS; Hendee WR Med Phys; 1977; 4(6):516-20. PubMed ID: 927389 [TBL] [Abstract][Full Text] [Related]
20. Mueller matrix measurements of algae with different shape and size distributions. Svensen Ø; Stamnes JJ; Kildemo M; Aas LM; Erga SR; Frette Ø Appl Opt; 2011 Sep; 50(26):5149-57. PubMed ID: 21946997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]