These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 19498717)

  • 1. Numerical simulation of surface-plasmon-assisted nanolithography.
    Shao DB; Chen SC
    Opt Express; 2005 Sep; 13(18):6964-73. PubMed ID: 19498717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of nanolithography with the subwavelength metallic grating waveguide structure.
    Jiao X; Wang P; Zhang D; Tang L; Xie J; Ming H
    Opt Express; 2006 May; 14(11):4850-60. PubMed ID: 19516643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subwavelength photolithography based on surface-plasmon polariton resonance.
    Luo X; Ishihara T
    Opt Express; 2004 Jul; 12(14):3055-65. PubMed ID: 19483824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photolithography-Based Nanopatterning Using Re-entrant Photoresist Profile.
    Kim TJ; Jung YH; Zhang H; Kim K; Lee J; Ma Z
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8117-8123. PubMed ID: 29345131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable ultra-deep subwavelength photolithography using a surface plasmon resonant cavity.
    Ge W; Wang C; Xue Y; Cao B; Zhang B; Xu K
    Opt Express; 2011 Mar; 19(7):6714-23. PubMed ID: 21451698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanolithography in the quasi-far field based on the destructive interference effect of surface plasmon polaritons.
    Wan X; Wang Q; Tao H
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):973-6. PubMed ID: 20448762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the Metal Reflector for Redistributing the Focusing Intensity of SPPs.
    Ji J; Xu P; Lin Z; Chen J; Li J; Meng Y
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32413982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-plasmon-polaritons-assisted nanolithography with dual-wavelength illumination for high exposure depth.
    Shi S; Zhang Z; Du J; Yang Z; Shi R; Li S; Gao F
    Opt Lett; 2012 Jan; 37(2):247-9. PubMed ID: 22854482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system.
    Ji J; Hu Y; Meng Y; Zhang J; Xu J; Li S; Yang G
    Nanotechnology; 2016 May; 27(18):185303. PubMed ID: 27010406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics.
    Choi M; Kang G; Shin D; Barange N; Lee CW; Ko DH; Kim K
    ACS Appl Mater Interfaces; 2016 May; 8(20):12997-3008. PubMed ID: 27160410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-Reduction Template Stripping of Smooth Curved Metallic Tips for Adiabatic Nanofocusing of Surface Plasmons.
    Johnson TW; Klemme DJ; Oh SH
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13624-9. PubMed ID: 27156522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale plasmonic stamp lithography on silicon.
    Liu F; Luber EJ; Huck LA; Olsen BC; Buriak JM
    ACS Nano; 2015 Feb; 9(2):2184-93. PubMed ID: 25654172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmons excited by multiple layer grating.
    Wu CL; Hsueh CH; Li JH
    Opt Express; 2019 Jan; 27(2):1660-1671. PubMed ID: 30696228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Centimeter-scale subwavelength photolithography using metal-coated elastomeric photomasks with modulated light intensity at the oblique sidewalls.
    Wu J; Liu Y; Guo Y; Feng S; Zou B; Mao H; Yu CH; Tian D; Huang W; Huo F
    Langmuir; 2015 May; 31(17):5005-13. PubMed ID: 25866865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the bias voltage effect and the force effect during the nanoscale AFM electric lithography on the copper thin film surface.
    Yang Y; Lin J
    Scanning; 2016 Sep; 38(5):412-420. PubMed ID: 26599706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical pulling force on dielectric particles via metallic slab surface plasmon excitation: a comparison between transmission and reflection schemes.
    Ferrari H; Herrero V; Cuevas M
    Opt Lett; 2023 May; 48(9):2345-2348. PubMed ID: 37126270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale line segment fabrication using super-resolution near-field photolithography.
    Yang CB
    Scanning; 2012; 34(5):284-94. PubMed ID: 22753279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apertureless beam pen lithography based on fully metal-coated polyurethane-acrylate (PUA) pyramidal microstructure array.
    Wu CY; Lee YC
    Opt Express; 2014 May; 22(9):10593-604. PubMed ID: 24921761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultraviolet surface plasmon-coupled emission using thin aluminum films.
    Gryczynski I; Malicka J; Gryczynski Z; Nowaczyk K; Lakowicz JR
    Anal Chem; 2004 Jul; 76(14):4076-81. PubMed ID: 15253645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanolithography method by using localized surface plasmon mask generated with polydimethylsiloxane soft mold on thin metal film.
    Zhang Y; Dong X; Du J; Wei X; Shi L; Deng Q; Du C
    Opt Lett; 2010 Jul; 35(13):2143-5. PubMed ID: 20596174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.