These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19498947)

  • 1. The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers.
    Poletti F; Broderick NG; Richardson D; Monro T
    Opt Express; 2005 Oct; 13(22):9115-24. PubMed ID: 19498947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of structural distortions on the performance of hollow-core photonic bandgap fibers.
    Fokoua EN; Richardson DJ; Poletti F
    Opt Express; 2014 Feb; 22(3):2735-44. PubMed ID: 24663565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers.
    Amezcua-Correa R; Broderick NG; Petrovich MN; Poletti F; Richardson DJ
    Opt Express; 2006 Aug; 14(17):7974-85. PubMed ID: 19529167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable highly birefringent photonic bandgap fibers.
    Zhang C; Kai G; Wang Z; Liu Y; Sun T; Yuan S; Dong X
    Opt Lett; 2005 Oct; 30(20):2703-5. PubMed ID: 16252747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modal dynamics in hollow-core photonic-crystal fibers with elliptical veins.
    Hochman A; Leviatan Y
    Opt Express; 2005 Aug; 13(16):6193-201. PubMed ID: 19498631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms.
    Saitoh K; Florous NJ; Murao T; Koshiba M
    Opt Express; 2006 Aug; 14(16):7342-52. PubMed ID: 19529103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of hollow-core photonic bandgap fiber ellipticity by induced lateral tension.
    Kim G; Cho T; Hwang K; Lee K; Lee KS; Lee SB
    Opt Express; 2009 Feb; 17(3):1268-73. PubMed ID: 19188954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation.
    Amezcua-Correa R; Broderick NG; Petrovich MN; Poletti F; Richardson DJ
    Opt Express; 2007 Dec; 15(26):17577-86. PubMed ID: 19551052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leakage loss and group velocity dispersion in air-core photonic bandgap fibers.
    Saitoh K; Koshiba M
    Opt Express; 2003 Nov; 11(23):3100-9. PubMed ID: 19471432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modes in air-core photonic band-gap fibers.
    West J; Smith C; Borrelli N; Allan D; Koch K
    Opt Express; 2004 Apr; 12(8):1485-96. PubMed ID: 19474974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization evolution in single-ring antiresonant hollow-core fibers.
    Jayakumar N; Sollapur R; Hoffmann A; Grigorova T; Hartung A; Schwuchow A; Bierlich J; Kobelke J; Schmidt MA; Spielmann C
    Appl Opt; 2018 Oct; 57(29):8529-8535. PubMed ID: 30461919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers.
    Kim HK; Digonnet M; Kino G; Shin J; Fan S
    Opt Express; 2004 Jul; 12(15):3436-42. PubMed ID: 19483869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-loss hollow-core silica/air photonic bandgap fibre.
    Smith CM; Venkataraman N; Gallagher MT; Müller D; West JA; Borrelli NF; Allan DC; Koch KW
    Nature; 2003 Aug; 424(6949):657-9. PubMed ID: 12904788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm.
    Wegmuller M; Legré M; Gisin N; Hansen T; Jakobsen C; Broeng J
    Opt Express; 2005 Mar; 13(5):1457-67. PubMed ID: 19495021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers.
    Fokoua EN; Poletti F; Richardson DJ
    Opt Express; 2012 Sep; 20(19):20980-91. PubMed ID: 23037221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cladding defects in hollow core fibers for surface mode suppression and improved birefringence.
    Michieletto M; Lyngsø JK; Lægsgaard J; Bang O
    Opt Express; 2014 Sep; 22(19):23324-32. PubMed ID: 25321801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic bandgap fibers with resonant structures for tailoring the dispersion.
    Várallyay Z; Saitoh K; Szabó A; Szipocs R
    Opt Express; 2009 Jul; 17(14):11869-83. PubMed ID: 19582101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate modelling of fabricated hollow-core photonic bandgap fibers.
    Fokoua EN; Sandoghchi SR; Chen Y; Jasion GT; Wheeler NV; Baddela NK; Hayes JR; Petrovich MN; Richardson DJ; Poletti F
    Opt Express; 2015 Sep; 23(18):23117-32. PubMed ID: 26368415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 7-cell hollow-core photonic bandgap fiber with broad spectral bandwidth and low loss.
    Zhang X; Gao S; Wang Y; Ding W; Wang X; Wang P
    Opt Express; 2019 Apr; 27(8):11608-11616. PubMed ID: 31053003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single scatterer Fano resonances in solid core photonic band gap fibers.
    Steinvurzel P; Martijn de Sterke C; Steel MJ; Kuhlmey BT; Eggleton BJ
    Opt Express; 2006 Sep; 14(19):8797-811. PubMed ID: 19529262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.