These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19499895)

  • 1. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene.
    Xie X; Ju L; Feng X; Sun Y; Zhou R; Liu K; Fan S; Li Q; Jiang K
    Nano Lett; 2009 Jul; 9(7):2565-70. PubMed ID: 19499895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can graphene be used as a substrate for Raman enhancement?
    Ling X; Xie L; Fang Y; Xu H; Zhang H; Kong J; Dresselhaus MS; Zhang J; Liu Z
    Nano Lett; 2010 Feb; 10(2):553-61. PubMed ID: 20039694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple mechanical technique to obtain carbon nanoscrolls from graphite nanoplatelets.
    Carotenuto G; Longo A; De Nicola S; Camerlingo C; Nicolais L
    Nanoscale Res Lett; 2013 Sep; 8(1):403. PubMed ID: 24229076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. n-Type behavior of graphene supported on Si/SiO(2) substrates.
    Romero HE; Shen N; Joshi P; Gutierrez HR; Tadigadapa SA; Sofo JO; Eklund PC
    ACS Nano; 2008 Oct; 2(10):2037-44. PubMed ID: 19206449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial bonding characteristics between graphene and dielectric substrates.
    Das S; Lahiri D; Agarwal A; Choi W
    Nanotechnology; 2014 Jan; 25(4):045707. PubMed ID: 24399030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A chemical route to graphene for device applications.
    Gilje S; Han S; Wang M; Wang KL; Kaner RB
    Nano Lett; 2007 Nov; 7(11):3394-8. PubMed ID: 17944523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue.
    Suk JW; Lee WH; Lee J; Chou H; Piner RD; Hao Y; Akinwande D; Ruoff RS
    Nano Lett; 2013 Apr; 13(4):1462-7. PubMed ID: 23510359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gate dependent Raman spectroscopy of graphene on hexagonal boron nitride.
    Chattrakun K; Huang S; Watanabe K; Taniguchi T; Sandhu A; LeRoy BJ
    J Phys Condens Matter; 2013 Dec; 25(50):505304. PubMed ID: 24275340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic hybridization of large-area stacked graphene films.
    Robinson JT; Schmucker SW; Diaconescu CB; Long JP; Culbertson JC; Ohta T; Friedman AL; Beechem TE
    ACS Nano; 2013 Jan; 7(1):637-44. PubMed ID: 23240977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct growth of doping-density-controlled hexagonal graphene on SiO2 substrate by rapid-heating plasma CVD.
    Kato T; Hatakeyama R
    ACS Nano; 2012 Oct; 6(10):8508-15. PubMed ID: 22971147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural configurations and Raman spectra of carbon nanoscrolls.
    Uhm T; Na J; Lee JU; Cheong H; Lee SW; Campbell EEB; Jhang SH
    Nanotechnology; 2020 Jul; 31(31):315707. PubMed ID: 32272453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of carbon nanoscrolls from monolayer graphene.
    Xia D; Xue Q; Xie J; Chen H; Lv C; Besenbacher F; Dong M
    Small; 2010 Sep; 6(18):2010-9. PubMed ID: 20715074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge inhomogeneity determines oxidative reactivity of graphene on substrates.
    Yamamoto M; Einstein TL; Fuhrer MS; Cullen WG
    ACS Nano; 2012 Sep; 6(9):8335-41. PubMed ID: 22917254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superstrong encapsulated monolayer graphene by the modified anodic bonding.
    Jung W; Yoon T; Choi J; Kim S; Kim YH; Kim TS; Han CS
    Nanoscale; 2014 Jan; 6(1):547-54. PubMed ID: 24241080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote catalyzation for direct formation of graphene layers on oxides.
    Teng PY; Lu CC; Akiyama-Hasegawa K; Lin YC; Yeh CH; Suenaga K; Chiu PW
    Nano Lett; 2012 Mar; 12(3):1379-84. PubMed ID: 22332771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The optical visibility of graphene: interference colors of ultrathin graphite on SiO(2).
    Roddaro S; Pingue P; Piazza V; Pellegrini V; Beltram F
    Nano Lett; 2007 Sep; 7(9):2707-10. PubMed ID: 17665963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices.
    Cheng Z; Zhou Q; Wang C; Li Q; Wang C; Fang Y
    Nano Lett; 2011 Feb; 11(2):767-71. PubMed ID: 21218829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene ultrathin film electrode for detection of lead ions in acetate buffer solution.
    Wang Z; Liu E
    Talanta; 2013 Jan; 103():47-55. PubMed ID: 23200357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corrugation of chemically converted graphene monolayers on SiO(2).
    Sinitskii A; Kosynkin DV; Dimiev A; Tour JM
    ACS Nano; 2010 Jun; 4(6):3095-102. PubMed ID: 20446664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new device concept for bacterial sensing by Raman spectroscopy and voltage-gated monolayer graphene.
    Nanda SS; Kim BJ; Kim KW; Nasir T; Park J; Yun K; Hembram KPSS; Papaefthymiou GC; Choi JY; Yi DK
    Nanoscale; 2019 Apr; 11(17):8528-8537. PubMed ID: 30990485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.