These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 19499916)

  • 1. Controlling the kinetics of contact electrification with patterned surfaces.
    Thomas SW; Vella SJ; Dickey MD; Kaufman GK; Whitesides GM
    J Am Chem Soc; 2009 Jul; 131(25):8746-7. PubMed ID: 19499916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of contact electrification between metals and polymers.
    Grzybowski BA; Fialkowski M; Wiles JA
    J Phys Chem B; 2005 Nov; 109(43):20511-5. PubMed ID: 16853654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic electrets: electrostatic charging of surfaces by transferring mobile ions upon contact.
    McCarty LS; Winkleman A; Whitesides GM
    J Am Chem Soc; 2007 Apr; 129(13):4075-88. PubMed ID: 17311380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets.
    McCarty LS; Whitesides GM
    Angew Chem Int Ed Engl; 2008; 47(12):2188-207. PubMed ID: 18270989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterns of electrostatic charge and discharge in contact electrification.
    Thomas SW; Vella SJ; Kaufman GK; Whitesides GM
    Angew Chem Int Ed Engl; 2008; 47(35):6654-6. PubMed ID: 18646035
    [No Abstract]   [Full Text] [Related]  

  • 6. The mosaic of surface charge in contact electrification.
    Baytekin HT; Patashinski AZ; Branicki M; Baytekin B; Soh S; Grzybowski BA
    Science; 2011 Jul; 333(6040):308-12. PubMed ID: 21700838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocontact electrification: patterned surface charges affecting adhesion, transfer, and printing.
    Cole JJ; Barry CR; Knuesel RJ; Wang X; Jacobs HO
    Langmuir; 2011 Jun; 27(11):7321-9. PubMed ID: 21526803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonconductive Noncharging Composites: Tunable and Stretchable Materials for Adaptive Prevention of Charging by Contact Electrification.
    Zhang X; Ao CK; Soh S
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5274-5285. PubMed ID: 31769961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tool for studying contact electrification in systems comprising metals and insulating polymers.
    Wiles JA; Grzybowski BA; Winkleman A; Whitesides GM
    Anal Chem; 2003 Sep; 75(18):4859-67. PubMed ID: 14674464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Material transfer and polarity reversal in contact charging.
    Baytekin HT; Baytekin B; Incorvati JT; Grzybowski BA
    Angew Chem Int Ed Engl; 2012 May; 51(20):4843-7. PubMed ID: 22422707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact electrification and adhesion between dissimilar materials.
    Horn RG; Smith DT
    Science; 1992 Apr; 256(5055):362-4. PubMed ID: 17743112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surface material on electrostatic charging of houseflies (Musca domestica L).
    McGonigle DF; Jackson CW
    Pest Manag Sci; 2002 Apr; 58(4):374-80. PubMed ID: 11975185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of self-assembled organic films using differential charging in X-ray photoelectron spectroscopy.
    Dubey M; Gouzman I; Bernasek SL; Schwartz J
    Langmuir; 2006 May; 22(10):4649-53. PubMed ID: 16649777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contact de-electrification of electrostatically charged polymers.
    Soh S; Kwok SW; Liu H; Whitesides GM
    J Am Chem Soc; 2012 Dec; 134(49):20151-9. PubMed ID: 23153329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charging of multiple interacting particles by contact electrification.
    Soh S; Liu H; Cademartiri R; Yoon HJ; Whitesides GM
    J Am Chem Soc; 2014 Sep; 136(38):13348-54. PubMed ID: 25171262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noncontact charge measurement of moving microparticles contacting dielectric surfaces.
    Nesterov A; Löffler F; König K; Trunk U; Leibe K; Felgenhauer T; Stadler V; Bischoff R; Breitling F; Lindenstruth V; Hausmann M
    Rev Sci Instrum; 2007 Jul; 78(7):075111. PubMed ID: 17672797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic self-assembly of macroscopic crystals using contact electrification.
    Grzybowski BA; Winkleman A; Wiles JA; Brumer Y; Whitesides GM
    Nat Mater; 2003 Apr; 2(4):241-5. PubMed ID: 12690397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the Charge of Sliding Water Drops.
    Wong WSY; Bista P; Li X; Veith L; Sharifi-Aghili A; Weber SAL; Butt HJ
    Langmuir; 2022 May; 38(19):6224-6230. PubMed ID: 35500291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocontact electrification through forced delamination of dielectric interfaces.
    Cole JJ; Barry CR; Wang X; Jacobs HO
    ACS Nano; 2010 Dec; 4(12):7492-8. PubMed ID: 20973486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of deformation and electrical charging of large water drops immersed in an insulating liquid on the electrode surface.
    Khorshidi B; Jalaal M; Esmaeilzadeh E; Mohammadi F
    J Colloid Interface Sci; 2010 Dec; 352(1):211-20. PubMed ID: 20822774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.