BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

794 related articles for article (PubMed ID: 19499918)

  • 1. Quenched ligand-directed tosylate reagents for one-step construction of turn-on fluorescent biosensors.
    Tsukiji S; Wang H; Miyagawa M; Tamura T; Takaoka Y; Hamachi I
    J Am Chem Soc; 2009 Jul; 131(25):9046-54. PubMed ID: 19499918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semisynthetic fluorescent sensor proteins based on self-labeling protein tags.
    Brun MA; Tan KT; Nakata E; Hinner MJ; Johnsson K
    J Am Chem Soc; 2009 Apr; 131(16):5873-84. PubMed ID: 19348459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a hybrid biosensor for enhanced phosphopeptide recognition based on a phosphoprotein binding domain coupled with a fluorescent chemosensor.
    Anai T; Nakata E; Koshi Y; Ojida A; Hamachi I
    J Am Chem Soc; 2007 May; 129(19):6232-9. PubMed ID: 17441721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot and sequential organic chemistry on an enzyme surface to tether a fluorescent probe at the proximity of the active site with restoring enzyme activity.
    Takaoka Y; Tsutsumi H; Kasagi N; Nakata E; Hamachi I
    J Am Chem Soc; 2006 Mar; 128(10):3273-80. PubMed ID: 16522109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Native FKBP12 engineering by ligand-directed tosyl chemistry: labeling properties and application to photo-cross-linking of protein complexes in vitro and in living cells.
    Tamura T; Tsukiji S; Hamachi I
    J Am Chem Soc; 2012 Feb; 134(4):2216-26. PubMed ID: 22220821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling a natural receptor protein with an artificial receptor to afford a semisynthetic fluorescent biosensor.
    Nakata E; Nagase T; Shinkai S; Hamachi I
    J Am Chem Soc; 2004 Jan; 126(2):490-5. PubMed ID: 14719946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A versatile polypeptide platform for integrated recognition and reporting: affinity arrays for protein-ligand interaction analysis.
    Enander K; Dolphin GT; Liedberg B; Lundström I; Baltzer L
    Chemistry; 2004 May; 10(10):2375-85. PubMed ID: 15146511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of artificial signal transducers on a lectin surface by post-photoaffinity-labeling modification for fluorescent saccharide biosensors.
    Nagase T; Nakata E; Shinkai S; Hamachi I
    Chemistry; 2003 Aug; 9(15):3660-9. PubMed ID: 12898693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a reagentless glucose biosensor using molecular exciton luminescence.
    Der BS; Dattelbaum JD
    Anal Biochem; 2008 Apr; 375(1):132-40. PubMed ID: 18082614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-directed tosyl chemistry for selective native protein labeling in vitro, in cells, and in vivo.
    Tsukiji S; Hamachi I
    Methods Mol Biol; 2015; 1266():243-63. PubMed ID: 25560080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis for the origin of differential spectral and binding profiles of dansylamide with human carbonic anhydrase I and II.
    Banerjee AL; Tobwala S; Ganguly B; Mallik S; Srivastava DK
    Biochemistry; 2005 Mar; 44(10):3673-82. PubMed ID: 15751944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modular strategy for tailoring fluorescent biosensors from ribonucleopeptide complexes.
    Hagihara M; Fukuda M; Hasegawa T; Morii T
    J Am Chem Soc; 2006 Oct; 128(39):12932-40. PubMed ID: 17002390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-directed tosyl chemistry for in situ native protein labeling and engineering in living systems: from basic properties to applications.
    Tsukiji S; Hamachi I
    Curr Opin Chem Biol; 2014 Aug; 21():136-43. PubMed ID: 25129055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disassembly-driven turn-on fluorescent nanoprobes for selective protein detection.
    Mizusawa K; Ishida Y; Takaoka Y; Miyagawa M; Tsukiji S; Hamachi I
    J Am Chem Soc; 2010 Jun; 132(21):7291-3. PubMed ID: 20462178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress in strategies for the creation of protein-based fluorescent biosensors.
    Wang H; Nakata E; Hamachi I
    Chembiochem; 2009 Nov; 10(16):2560-77. PubMed ID: 19693761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorophore labeling of native FKBP12 by ligand-directed tosyl chemistry allows detection of its molecular interactions in vitro and in living cells.
    Tamura T; Kioi Y; Miki T; Tsukiji S; Hamachi I
    J Am Chem Soc; 2013 May; 135(18):6782-5. PubMed ID: 23611728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation-driven protein-protein interactions: a protein kinase sensing system.
    Wang Q; Lawrence DS
    J Am Chem Soc; 2005 Jun; 127(21):7684-5. PubMed ID: 15913351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of ribonucleopeptide-based fluorescent sensors for biologically active amines based on the stepwise molding strategy.
    Tainaka K; Hasegawa T; Fukuda M; Nakano S; Fujieda N; Morii T
    Nucleic Acids Symp Ser (Oxf); 2008; (52):201-2. PubMed ID: 18776323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a fluorescent biosensor family.
    de Lorimier RM; Smith JJ; Dwyer MA; Looger LL; Sali KM; Paavola CD; Rizk SS; Sadigov S; Conrad DW; Loew L; Hellinga HW
    Protein Sci; 2002 Nov; 11(11):2655-75. PubMed ID: 12381848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of human carbonic anhydrase II: docking reliability and receptor-based 3D-QSAR study.
    Tuccinardi T; Nuti E; Ortore G; Supuran CT; Rossello A; Martinelli A
    J Chem Inf Model; 2007; 47(2):515-25. PubMed ID: 17295464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.