BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

794 related articles for article (PubMed ID: 19499918)

  • 21. Design and construction of glutamine binding proteins with a self-adhering capability to unmodified hydrophobic surfaces as reagentless fluorescence sensing devices.
    Wada A; Mie M; Aizawa M; Lahoud P; Cass AE; Kobatake E
    J Am Chem Soc; 2003 Dec; 125(52):16228-34. PubMed ID: 14692764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence-based peptide screening using ligand peptides directly conjugated to a thiolated glass surface.
    Lim CH; Cho HM; Choo J; Neff S; Jungbauer A; Kumada Y; Katoh S; Lee EK
    Biomed Microdevices; 2009 Jun; 11(3):663-9. PubMed ID: 19142733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Knowledge-based design of reagentless fluorescent biosensors from a designed ankyrin repeat protein.
    Brient-Litzler E; Plückthun A; Bedouelle H
    Protein Eng Des Sel; 2010 Apr; 23(4):229-41. PubMed ID: 19945965
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorescent biosensors of intracellular targets from genetically encoded reporters to modular polypeptide probes.
    Morris MC
    Cell Biochem Biophys; 2010; 56(1):19-37. PubMed ID: 19921468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors.
    Altschuh D; Oncul S; Demchenko AP
    J Mol Recognit; 2006; 19(6):459-77. PubMed ID: 17089349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Site-specific chemical labeling of mitochondrial respiratory complex I through ligand-directed tosylate chemistry.
    Masuya T; Murai M; Ifuku K; Morisaka H; Miyoshi H
    Biochemistry; 2014 Apr; 53(14):2307-17. PubMed ID: 24660830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Knowledge-based design of reagentless fluorescent biosensors from recombinant antibodies.
    Renard M; Belkadi L; Hugo N; England P; Altschuh D; Bedouelle H
    J Mol Biol; 2002 Apr; 318(2):429-42. PubMed ID: 12051849
    [TBL] [Abstract][Full Text] [Related]  

  • 28. General strategy for biosensor design and construction employing multifunctional surface-tethered components.
    Medintz IL; Anderson GP; Lassman ME; Goldman ER; Bettencourt LA; Mauro JM
    Anal Chem; 2004 Oct; 76(19):5620-9. PubMed ID: 15456279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of ribonucleopeptide-based fluorescent sensors for biologically active amines.
    Hasegawa T; Hayashi H; Morii T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):423-4. PubMed ID: 18029767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions.
    Chen P; He C
    J Am Chem Soc; 2004 Jan; 126(3):728-9. PubMed ID: 14733542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A fluorescence-based synthetic LPS sensor.
    Voss S; Fischer R; Jung G; Wiesmüller KH; Brock R
    J Am Chem Soc; 2007 Jan; 129(3):554-61. PubMed ID: 17227018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetically engineered binding proteins as biosensors for fermentation and cell culture.
    Ge X; Tolosa L; Simpson J; Rao G
    Biotechnol Bioeng; 2003 Dec; 84(6):723-31. PubMed ID: 14595785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Designed, functionalized helix-loop-helix motifs that bind human carbonic anhydrase II: a new class of synthetic receptor molecules.
    Enander K; Dolphin GT; Baltzer L
    J Am Chem Soc; 2004 Apr; 126(14):4464-5. PubMed ID: 15070333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A strategic fluorescence labeling of D-galactose/D-glucose-binding protein from Escherichia coli helps to shed light on the protein structural stability and dynamics.
    Scognamiglio V; Scirè A; Aurilia V; Staiano M; Crescenzo R; Palmucci C; Bertoli E; Rossi M; Tanfani F; D'Auria S
    J Proteome Res; 2007 Nov; 6(11):4119-26. PubMed ID: 17924684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction of Protein-Based Biosensors Using Ligand-Directed Chemistry for Detecting Analyte Binding.
    Yamaura K; Kiyonaka S; Hamachi I
    Methods Enzymol; 2017; 589():253-280. PubMed ID: 28336066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Covalently linked fluorescent ribonucreopeptide sensors.
    Fukuda M; Fong-Fong L; Morii T
    Nucleic Acids Symp Ser (Oxf); 2009; (53):257-8. PubMed ID: 19749358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-based design of fluorescent biosensors from ribonucleopeptide complexes.
    Hayashi H; Inoue M; Morii T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):95-6. PubMed ID: 18029603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving the sensitivity and dynamic range of reagentless fluorescent immunosensors by knowledge-based design.
    Renard M; Bedouelle H
    Biochemistry; 2004 Dec; 43(49):15453-62. PubMed ID: 15581357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Creation of GPCR-based chemical sensors by directed evolution in yeast.
    Ault AD; Broach JR
    Protein Eng Des Sel; 2006 Jan; 19(1):1-8. PubMed ID: 16263727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorophore labeling of the glycine-rich loop as a method of identifying inhibitors that bind to active and inactive kinase conformations.
    Simard JR; Getlik M; Grütter C; Schneider R; Wulfert S; Rauh D
    J Am Chem Soc; 2010 Mar; 132(12):4152-60. PubMed ID: 20201574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 40.