These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1161 related articles for article (PubMed ID: 19499936)

  • 1. Functionalization of the semiconductor surfaces of diamond (100), Si (100), and Ge (100) by cycloaddition of transition metal oxides: a theoretical prediction.
    Xu YJ; Fu X
    Langmuir; 2009 Sep; 25(17):9840-6. PubMed ID: 19499936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic functionalization of the Si (100) and Ge (100) surfaces by cycloadditions of carbenes and nitrenes: a theoretical prediction.
    Xu YJ; Zhang YF; Li JQ
    J Phys Chem B; 2006 Feb; 110(7):3197-205. PubMed ID: 16494329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of acrylonitrile on diamond and silicon (001)-(2 x 1) surfaces: effects of dimer structure on reaction pathways and product distributions.
    Schwartz MP; Barlow DE; Russell JN; Butler JE; D'Evelyn MP; Hamers RJ
    J Am Chem Soc; 2005 Jun; 127(23):8348-54. PubMed ID: 15941268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiol-terminated monolayers on oxide-free Si: assembly of semiconductor-alkyl-S-metal junctions.
    Böcking T; Salomon A; Cahen D; Gooding JJ
    Langmuir; 2007 Mar; 23(6):3236-41. PubMed ID: 17266341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cycloadditions of various substituted carbenes, silylenes, and germylenes onto the diamond (100) surface: a theoretical exploration.
    Xu YJ; Zhang YF; Li JQ
    J Phys Chem B; 2006 Jul; 110(28):13931-40. PubMed ID: 16836344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periodic trends in organic functionalization of group IV semiconductor surfaces.
    Kachian JS; Wong KT; Bent SF
    Acc Chem Res; 2010 Feb; 43(2):346-55. PubMed ID: 20041705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dehydrogenative silane coupling on silicon surfaces via early transition metal catalysis.
    Li YH; Buriak JM
    Inorg Chem; 2006 Feb; 45(3):1096-102. PubMed ID: 16441118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting facile epoxidation of the diamond (100) surface by dioxiranes and subsequent ring-opening reactions with nucleophiles.
    Xu YJ; Zhang YF; Li JQ
    J Phys Chem B; 2006 Mar; 110(12):6148-53. PubMed ID: 16553428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cycloaddition chemistry of organic molecules with semiconductor surfaces.
    Hamers RJ; Coulter SK; Ellison MD; Hovis JS; Padowitz DF; Schwartz MP; Greenlief CM; Russell JN
    Acc Chem Res; 2000 Sep; 33(9):617-24. PubMed ID: 10995199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalization of diamond (100) by organic cycloaddition reactions of nitrenes: a theoretical prediction.
    Xu YJ; Zhang YF; Li JQ
    J Org Chem; 2005 Sep; 70(19):7773-5. PubMed ID: 16149813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic functionalization of diamond (100) by addition reactions of carbene, silylene, and germylene: a theoretical prediction.
    Xu YJ; Zhang YF; Li JQ
    J Org Chem; 2005 Jul; 70(15):6089-92. PubMed ID: 16018707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface doping of conjugated organic films by means of diffusion of atomic components from the surfaces of semiconductors and of metal oxides.
    Komolov AS; Akhremtchik SN; Lazneva EF
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug; 79(4):708-11. PubMed ID: 20863744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dehydrative cyclocondensation reactions on hydrogen-terminated Si(100) and Si(111): an ex situ tool for the modification of semiconductor surfaces.
    Leftwich TR; Madachik MR; Teplyakov AV
    J Am Chem Soc; 2008 Dec; 130(48):16216-23. PubMed ID: 18989960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface chemistry for stable and smart molecular and biomolecular interfaces via photochemical grafting of alkenes.
    Wang X; Landis EC; Franking R; Hamers RJ
    Acc Chem Res; 2010 Sep; 43(9):1205-15. PubMed ID: 20853906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of surface dimer dynamics in creating ordered organic-semiconductor interfaces.
    Hayes RL; Tuckerman ME
    J Am Chem Soc; 2007 Oct; 129(40):12172-80. PubMed ID: 17880070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonthermal plasma synthesized freestanding silicon-germanium alloy nanocrystals.
    Pi XD; Kortshagen U
    Nanotechnology; 2009 Jul; 20(29):295602. PubMed ID: 19567968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of C60 buckminster fullerenes on an 11-amino-1-undecene-covered Si(111) substrate.
    Zhang X; Teplyakov AV
    Langmuir; 2008 Feb; 24(3):810-20. PubMed ID: 18085804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalently modified silicon and diamond surfaces: resistance to nonspecific protein adsorption and optimization for biosensing.
    Lasseter TL; Clare BH; Abbott NL; Hamers RJ
    J Am Chem Soc; 2004 Aug; 126(33):10220-1. PubMed ID: 15315415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonradical mechanisms for the uncatalyzed thermal functionalization of silicon surfaces by alkenes and alkynes: a density functional study.
    Coletti C; Marrone A; Giorgi G; Sgamellotti A; Cerofolini G; Re N
    Langmuir; 2006 Nov; 22(24):9949-56. PubMed ID: 17106984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and reactions of SiOx/Si nanostructures on surface-templated molecule corrals.
    Liu Y; Zhang Z; Wells MC; Beebe TP
    Langmuir; 2005 Sep; 21(19):8883-91. PubMed ID: 16142974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.