These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Highly superporous cholesterol-modified poly(2-hydroxyethyl methacrylate) scaffolds for spinal cord injury repair. Kubinová S; Horák D; Hejčl A; Plichta Z; Kotek J; Syková E J Biomed Mater Res A; 2011 Dec; 99(4):618-29. PubMed ID: 21953978 [TBL] [Abstract][Full Text] [Related]
3. The use of superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds to promote cell adhesion and the differentiation of human fetal neural precursors. Kubinová S; Horák D; Kozubenko N; Vanecek V; Proks V; Price J; Cocks G; Syková E Biomaterials; 2010 Aug; 31(23):5966-75. PubMed ID: 20483453 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold. Savina IN; Dainiak M; Jungvid H; Mikhalovsky SV; Galaev IY J Biomater Sci Polym Ed; 2009; 20(12):1781-95. PubMed ID: 19723441 [TBL] [Abstract][Full Text] [Related]
5. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering. Çetin D; Kahraman AS; Gümüşderelioğlu M J Biomater Sci Polym Ed; 2011; 22(9):1157-78. PubMed ID: 20615330 [TBL] [Abstract][Full Text] [Related]
6. The use of new surface-modified poly(2-hydroxyethyl methacrylate) hydrogels in tissue engineering: treatment of the surface with fibronectin subunits versus Ac-CGGASIKVAVS-OH, cysteine, and 2-mercaptoethanol modification. Kubinová Š; Horák D; Vaněček V; Plichta Z; Proks V; Syková E J Biomed Mater Res A; 2014 Jul; 102(7):2315-23. PubMed ID: 23946247 [TBL] [Abstract][Full Text] [Related]
7. The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Guvendiren M; Burdick JA Biomaterials; 2010 Sep; 31(25):6511-8. PubMed ID: 20541257 [TBL] [Abstract][Full Text] [Related]
8. Behaviour of human mesenchymal stem cells on a polyelectrolyte-modified HEMA hydrogel for silk-based ligament tissue engineering. Bosetti M; Boccafoschi F; Calarco A; Leigheb M; Gatti S; Piffanelli V; Peluso G; Cannas M J Biomater Sci Polym Ed; 2008; 19(9):1111-23. PubMed ID: 18727855 [TBL] [Abstract][Full Text] [Related]
9. Biomimetic modification of dual porosity poly(2-hydroxyethyl methacrylate) hydrogel scaffolds-porosity and stem cell growth evaluation. Janoušková O; Přádný M; Vetrík M; Chylíková Krumbholcová E; Michálek J; Dušková Smrčková M Biomed Mater; 2019 Jul; 14(5):055004. PubMed ID: 31181551 [TBL] [Abstract][Full Text] [Related]
12. Synthetic poly(amino acid) hydrogels with incorporated cell-adhesion peptides for tissue engineering. Studenovská H; Vodicka P; Proks V; Hlucilová J; Motlík J; Rypácek F J Tissue Eng Regen Med; 2010 Aug; 4(6):454-63. PubMed ID: 20084624 [TBL] [Abstract][Full Text] [Related]
13. PHEMA hydrogels modified through the grafting of phosphate groups by ATRP support the attachment and growth of human corneal epithelial cells. Zainuddin ; Barnard Z; Keen I; Hill DJ; Chirila TV; Harkin DG J Biomater Appl; 2008 Sep; 23(2):147-68. PubMed ID: 18632768 [TBL] [Abstract][Full Text] [Related]
14. Poly(2-hydroxyethyl methacrylate)-based slabs as a mouse embryonic stem cell support. Horák D; Kroupová J; Slouf M; Dvorák P Biomaterials; 2004 Oct; 25(22):5249-60. PubMed ID: 15110476 [TBL] [Abstract][Full Text] [Related]
15. RGDS-Modified Superporous Poly(2-Hydroxyethyl Methacrylate)-Based Scaffolds as 3D In Vitro Leukemia Model. Svozilová H; Plichta Z; Proks V; Studená R; Baloun J; Doubek M; Pospíšilová Š; Horák D Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33673496 [TBL] [Abstract][Full Text] [Related]
17. Dual-functional electrospun poly(2-hydroxyethyl methacrylate). Zhang B; Lalani R; Cheng F; Liu Q; Liu L J Biomed Mater Res A; 2011 Dec; 99(3):455-66. PubMed ID: 21887741 [TBL] [Abstract][Full Text] [Related]
18. Magnetic Superporous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Bone Tissue Engineering. Zasońska BA; Brož A; Šlouf M; Hodan J; Petrovský E; Hlídková H; Horák D Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34199994 [TBL] [Abstract][Full Text] [Related]
19. Morphological and topographic effects on calcification tendency of pHEMA hydrogels. Lou X; Vijayasekaran S; Sugiharti R; Robertson T Biomaterials; 2005 Oct; 26(29):5808-17. PubMed ID: 15949546 [TBL] [Abstract][Full Text] [Related]
20. Adjusting the chemical and physical properties of hydrogels leads to improved stem cell survival and tissue ingrowth in spinal cord injury reconstruction: a comparative study of four methacrylate hydrogels. Hejčl A; Růžička J; Kapcalová M; Turnovcová K; Krumbholcová E; Přádný M; Michálek J; Cihlář J; Jendelová P; Syková E Stem Cells Dev; 2013 Oct; 22(20):2794-805. PubMed ID: 23750454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]