These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19501361)

  • 1. Functional cues in the development of osseous tooth support in the pig, Sus scrofa.
    Popowics T; Yeh K; Rafferty K; Herring S
    J Biomech; 2009 Aug; 42(12):1961-6. PubMed ID: 19501361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of tooth extraction on alveolar bone biomechanics in the miniature pig, Sus scrofa.
    Yeh K; Popowics T; Rafferty K; Herring S; Egbert M
    Arch Oral Biol; 2010 Sep; 55(9):663-9. PubMed ID: 20580345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of occlusal function on structural adaptation in alveolar bone of the growing pig, Sus Scrofa.
    Yeh KD; Popowics TE
    Arch Oral Biol; 2011 Jan; 56(1):79-89. PubMed ID: 20855059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular and structural assessment of alveolar bone during tooth eruption and function in the miniature pig, sus scrofa.
    Yeh KD; Popowics T
    Anat Histol Embryol; 2011 Aug; 40(4):283-91. PubMed ID: 21434979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eruptive and functional changes in periodontal ligament fibroblast orientation in CD44 wild-type vs. knockout mice.
    Popowics T; Boyd T; Hinderberger H
    J Periodontal Res; 2014 Jun; 49(3):355-62. PubMed ID: 23808836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo measurement of strain in the periodontal space of pig (Sus scrofa) incisors using in-fiber Bragg sensors.
    Popowics TE; Hwang I; Lu J; Nguyen T; Sample M; Sangster A; Tang D; Dennison CR; Romanyk DL; Rafferty K; Greenlee G
    J Morphol; 2024 Jun; 285(6):e21738. PubMed ID: 38783683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The rise and fall of the alveolar process: Dependency of teeth and metabolic aspects.
    Jonasson G; Skoglund I; Rythén M
    Arch Oral Biol; 2018 Dec; 96():195-200. PubMed ID: 30292055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of BMP6 in the alveolar bone during mouse mandibular molar eruption.
    Oralová V; Chlastáková I; Radlanski RJ; Matalová E
    Connect Tissue Res; 2014; 55(5-6):357-66. PubMed ID: 25084210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional tooth mobility in young pigs.
    Salamati A; Chen J; Herring SW; Liu ZJ
    J Biomech; 2020 May; 104():109716. PubMed ID: 32173029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental ex vivo traumatic intrusion in the mandibular incisors of the farm pig, Sus scrofa.
    Patterson A; Popowics T
    Dent Traumatol; 2014 Dec; 30(6):423-8. PubMed ID: 24751110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A histological study of root-resected and root-transected rat incisors when eruption ceases, shortly before they are exfoliated from the socket.
    Merzel JJ; Duarte Novaes PP; Furlan SS
    Arch Oral Biol; 2000 Apr; 45(4):315-22. PubMed ID: 10708671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strains in periodontal ligament and alveolar bone associated with orthodontic tooth movement analyzed by finite element.
    Cattaneo PM; Dalstra M; Melsen B
    Orthod Craniofac Res; 2009 May; 12(2):120-8. PubMed ID: 19419455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of osseointegrated implants on the dento-alveolar development. A clinical and radiographic study in growing pigs.
    Odman J; Gröndahl K; Lekholm U; Thilander B
    Eur J Orthod; 1991 Aug; 13(4):279-86. PubMed ID: 1915616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone formation as a potential motive force of tooth eruption in the rat molar.
    Wise GE; Yao S; Henk WG
    Clin Anat; 2007 Aug; 20(6):632-9. PubMed ID: 17415742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced digital photoelastic investigations on the tooth-bone interface.
    Asundi A; Kishen A
    J Biomed Opt; 2001 Apr; 6(2):224-30. PubMed ID: 11375733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of root and alveolar bone development of unilateral osseous impacted immature maxillary central incisors after the closed-eruption technique.
    Shi X; Xie X; Quan J; Wang X; Sun X; Zhang C; Zheng S
    Am J Orthod Dentofacial Orthop; 2015 Oct; 148(4):587-98. PubMed ID: 26432314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the shape and orientation of periodontal ligament fibroblasts in the continuously erupting rat incisor following removal of the occlusal load.
    Weinreb M; Gal D; Weinreb MM; Pitaru S
    J Dent Res; 1997 Oct; 76(10):1660-6. PubMed ID: 9326898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of the variable periodontal ligament geometry for whole tooth mechanical function: A validated numerical study.
    Nikolaus A; Currey JD; Lindtner T; Fleck C; Zaslansky P
    J Mech Behav Biomed Mater; 2017 Mar; 67():61-73. PubMed ID: 27987427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element simulation of the human mandible: the role of (natural) teeth.
    Kober C; Stübinger S; Hellmich C; Sader R; Zeilhofer HF
    Int J Comput Dent; 2008; 11(3-4):169-74. PubMed ID: 19216309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of the biomechanical properties of the periodontal ligaments of erupting and erupted teeth of non-continuous growth (ferret mandibular canines).
    Moxham BJ; Berkovitz BK
    Arch Oral Biol; 1989; 34(10):763-6. PubMed ID: 2610611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.