BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

496 related articles for article (PubMed ID: 19501382)

  • 1. Degradation of 1,2-dichloroethane by microbial communities from river sediment at various redox conditions.
    van der Zaan B; de Weert J; Rijnaarts H; de Vos WM; Smidt H; Gerritse J
    Water Res; 2009 Jul; 43(13):3207-16. PubMed ID: 19501382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific microbial communities in three PCB-impacted sediments are associated with different in situ dechlorinating activities.
    Kjellerup BV; Sun X; Ghosh U; May HD; Sowers KR
    Environ Microbiol; 2008 May; 10(5):1296-309. PubMed ID: 18312399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of the total and functional microbial communities in river sediment mesocosms exposed to anthropogenic disturbances.
    Van der Zaan B; Smidt H; De Vos WM; Rijnaarts H; Gerritse J
    FEMS Microbiol Ecol; 2010 Oct; 74(1):72-82. PubMed ID: 20618856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of 1,2-dichloroethane-adapted microbial communities to ex-situ biostimulation of polluted groundwater.
    Marzorati M; Borin S; Brusetti L; Daffonchio D; Marsilli C; Carpani G; de Ferra F
    Biodegradation; 2006 Mar; 17(2):143-58. PubMed ID: 16565809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Change of bacterial communities in sediments along Songhua River in Northeastern China after a nitrobenzene pollution event.
    Li D; Yang M; Li Z; Qi R; He J; Liu H
    FEMS Microbiol Ecol; 2008 Sep; 65(3):494-503. PubMed ID: 18616580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of co-substrate activation on indigenous and bioaugmented PCB dechlorinating bacterial communities in sediment microcosms.
    Park JW; Krumins V; Kjellerup BV; Fennell DE; Rodenburg LA; Sowers KR; Kerkhof LJ; Häggblom MM
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):2005-17. PubMed ID: 21046375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioremediation of 1,2-dichloroethane contaminated groundwater: Microcosm and microbial diversity studies.
    Wang SY; Kuo YC; Huang YZ; Huang CW; Kao CM
    Environ Pollut; 2015 Aug; 203():97-106. PubMed ID: 25863886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concurrent hexachlorobenzene and chloroethene transformation by endogenous dechlorinating microorganisms in the Ebro River sediment.
    Taş N; Heilig HG; van Eekert MH; Schraa G; de Vos WM; Smidt H
    FEMS Microbiol Ecol; 2010 Dec; 74(3):682-92. PubMed ID: 20942807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of microbial community structure and population dynamics of tetrachloroethene-dechlorinating tidal mudflat communities.
    Lee J; Lee TK; Löffler FE; Park J
    Biodegradation; 2011 Jul; 22(4):687-98. PubMed ID: 21053056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for Dehalobacter spp. in the reductive dehalogenation of dichlorobenzenes and monochlorobenzene.
    Nelson JL; Fung JM; Cadillo-Quiroz H; Cheng X; Zinder SH
    Environ Sci Technol; 2011 Aug; 45(16):6806-13. PubMed ID: 21732639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of chlordane and hexachlorobenzenes in river sediment.
    Hirano T; Ishida T; Oh K; Sudo R
    Chemosphere; 2007 Mar; 67(3):428-34. PubMed ID: 17123575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-occurrence of genes for aerobic and anaerobic biodegradation of dichloroethane in organochlorine-contaminated groundwater.
    Munro JE; Kimyon Ö; Rich DJ; Koenig J; Tang S; Low A; Lee M; Manefield M; Coleman NV
    FEMS Microbiol Ecol; 2017 Nov; 93(11):. PubMed ID: 29040474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PCB dechlorination enhancement in Anacostia River sediment microcosms.
    Krumins V; Park JW; Son EK; Rodenburg LA; Kerkhof LJ; Häggblom MM; Fennell DE
    Water Res; 2009 Oct; 43(18):4549-58. PubMed ID: 19744693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of 1,1,2,2-tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: biogeochemical controls and associations with microbial communities.
    Lorah MM; Voytek MA
    J Contam Hydrol; 2004 May; 70(1-2):117-45. PubMed ID: 15068871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial oxidation of 1,2-dichloroethane under anoxic conditions with nitrate as electron acceptor in mixed and pure cultures.
    Dinglasan-Panlilio MJ; Dworatzek S; Mabury S; Edwards E
    FEMS Microbiol Ecol; 2006 Jun; 56(3):355-64. PubMed ID: 16689868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes.
    Grostern A; Edwards EA
    Appl Environ Microbiol; 2006 Jan; 72(1):428-36. PubMed ID: 16391074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Characterization of PCE-to-Ethene Dechlorinating Microcosms with Contaminated River Sediment.
    Lee J; Lee TK
    J Microbiol Biotechnol; 2016 Jan; 26(1):120-9. PubMed ID: 26502734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of erythromycin A on the microbial populations in aquaculture sediment microcosms.
    Kim YH; Cerniglia CE
    Aquat Toxicol; 2005 Jul; 73(3):230-41. PubMed ID: 15935863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of novel perchloroethene-respiring microorganisms in anoxic river sediment by RNA-based stable isotope probing.
    Kittelmann S; Friedrich MW
    Environ Microbiol; 2008 Jan; 10(1):31-46. PubMed ID: 18211265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial heterogeneity of dechlorinating bacteria and limiting factors for in situ trichloroethene dechlorination revealed by analyses of sediment cores from a polluted field site.
    Dowideit K; Scholz-Muramatsu H; Miethling-Graff R; Vigelahn L; Freygang M; Dohrmann AB; Tebbe CC
    FEMS Microbiol Ecol; 2010 Mar; 71(3):444-59. PubMed ID: 20041951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.