These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 19501396)

  • 1. Electrophysiological characterization of embryonic hippocampal neurons cultured in a 3D collagen hydrogel.
    Xu T; Molnar P; Gregory C; Das M; Boland T; Hickman JJ
    Biomaterials; 2009 Sep; 30(26):4377-83. PubMed ID: 19501396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal analysis of 3D human iPSC-derived neural networks using a 3D multi-electrode array.
    Lam D; Enright HA; Cadena J; George VK; Soscia DA; Tooker AC; Triplett M; Peters SKG; Karande P; Ladd A; Bogguri C; Wheeler EK; Fischer NO
    Front Cell Neurosci; 2023; 17():1287089. PubMed ID: 38026689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional bioengineered models of the central nervous system.
    Rouleau N; Murugan NJ; Kaplan DL
    Nat Rev Bioeng; 2023; 1(4):252-270. PubMed ID: 37064657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the three-dimensional connectivity of in vitro cortical ensembles coupled to Micro-Electrode Arrays.
    Callegari F; Brofiga M; Massobrio P
    PLoS Comput Biol; 2023 Feb; 19(2):e1010825. PubMed ID: 36780570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Impact of the Cellular Environment and Aging on Modeling Alzheimer's Disease in 3D Cell Culture Models.
    Hebisch M; Klostermeier S; Wolf K; Boccaccini AR; Wolf SE; Tanzi RE; Kim DY
    Adv Sci (Weinh); 2023 Mar; 10(8):e2205037. PubMed ID: 36642841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogels for Single-Cell Microgel Production: Recent Advances and Applications.
    Tiemeijer BM; Tel J
    Front Bioeng Biotechnol; 2022; 10():891461. PubMed ID: 35782502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning Physicochemical Properties of a Macroporous Polysaccharide-Based Scaffold for 3D Neuronal Culture.
    Gerschenfeld G; Aid R; Simon-Yarza T; Lanouar S; Charnay P; Letourneur D; Topilko P
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering
    Warren D; Tomaskovic-Crook E; Wallace GG; Crook JM
    APL Bioeng; 2021 Jun; 5(2):020901. PubMed ID: 33834152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-D multi-electrode arrays detect early spontaneous electrophysiological activity in 3-D neuronal-astrocytic co-cultures.
    Vernekar VN; LaPlaca MC
    Biomed Eng Lett; 2020 Nov; 10(4):579-591. PubMed ID: 33194249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D brain tissue physiological model with co-cultured primary neurons and glial cells in hydrogels.
    Raimondi I; Tunesi M; Forloni G; Albani D; Giordano C
    J Tissue Eng; 2020; 11():2041731420963981. PubMed ID: 33117519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable Nanopolymers in Cardiac Tissue Engineering: From Concept Towards Nanomedicine.
    Mohammadi Nasr S; Rabiee N; Hajebi S; Ahmadi S; Fatahi Y; Hosseini M; Bagherzadeh M; Ghadiri AM; Rabiee M; Jajarmi V; Webster TJ
    Int J Nanomedicine; 2020; 15():4205-4224. PubMed ID: 32606673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofabrication for neural tissue engineering applications.
    Papadimitriou L; Manganas P; Ranella A; Stratakis E
    Mater Today Bio; 2020 Mar; 6():100043. PubMed ID: 32190832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and Analysis of Collective Cellular Behaviors in 3D Dextran Hydrogels with Homogenous and Clustered RGD Compositions.
    Wang Z; Zhu X; Zhang R
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31627307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer-By-Layer: The Case for 3D Bioprinting Neurons to Create Patient-Specific Epilepsy Models.
    Antill-O'Brien N; Bourke J; O'Connell CD
    Materials (Basel); 2019 Oct; 12(19):. PubMed ID: 31581436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural layer self-assembly in geometrically confined rat and human 3D cultures.
    Hasan MF; Ghiasvand S; Wang H; Miwa JM; Berdichevsky Y
    Biofabrication; 2019 Aug; 11(4):045011. PubMed ID: 31247598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality Through Computational and Structural Biotechnology Analytical Methods.
    Almouemen N; Kelly HM; O'Leary C
    Comput Struct Biotechnol J; 2019; 17():591-598. PubMed ID: 31080565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling.
    Centeno EGZ; Cimarosti H; Bithell A
    Mol Neurodegener; 2018 May; 13(1):27. PubMed ID: 29788997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tissue-mimetic nano-fibrillar hybrid injectable hydrogel for potential soft tissue engineering applications.
    Latifi N; Asgari M; Vali H; Mongeau L
    Sci Rep; 2018 Jan; 8(1):1047. PubMed ID: 29348423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microdevice Platform for In Vitro Nervous System and Its Disease Model.
    Choi JH; Cho HY; Choi JW
    Bioengineering (Basel); 2017 Sep; 4(3):. PubMed ID: 28952555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue Chips to aid drug development and modeling for rare diseases.
    Low LA; Tagle DA
    Expert Opin Orphan Drugs; 2016; 4(11):1113-1121. PubMed ID: 28626620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.