These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 19501437)

  • 1. Influence of hydroxypropyl-beta-cyclodextrin on the biodegradation of 14C-phenanthrene and 14C-hexadecane in soil.
    Stroud JL; Tzima M; Paton GI; Semple KT
    Environ Pollut; 2009 Oct; 157(10):2678-83. PubMed ID: 19501437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking chemical extraction to microbial degradation of 14C-hexadecane in soil.
    Stroud JL; Paton GI; Semple KT
    Environ Pollut; 2008 Nov; 156(2):474-81. PubMed ID: 18316143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of activated charcoal on the mineralisation of 14C-phenanthrene in soils.
    Rhodes AH; McAllister LE; Chen R; Semple KT
    Chemosphere; 2010 Apr; 79(4):463-9. PubMed ID: 20171713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the biodegradation of target hydrocarbons in the presence of mixed contaminants in soil.
    Stroud JL; Paton GI; Semple KT
    Chemosphere; 2009 Jan; 74(4):563-7. PubMed ID: 19012945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of microbial accessibility of carbon-14-phenanthrene in soil in the presence of pyrene or benzo[a]pyrene using an aqueous cyclodextrin extraction technique.
    Papadopoulos A; Reid BJ; Semple KT
    J Environ Qual; 2007; 36(5):1385-91. PubMed ID: 17785278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of a NAPL on the loss and biodegradation of 14C-phenanthrene residues in two dissimilar soils.
    Swindell AL; Reid BJ
    Chemosphere; 2007 Jan; 66(2):332-9. PubMed ID: 16766015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of agitation on the biodegradation of hydrocarbon contaminants in soil slurries.
    Stroud JL; Paton GI; Semple KT
    Chemosphere; 2009 Sep; 77(1):123-8. PubMed ID: 19487012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil?
    Semple KT; Dew NM; Doick KJ; Rhodes AH
    Environ Pollut; 2006 Mar; 140(1):164-72. PubMed ID: 16112779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil.
    Wang P; Wang H; Wu L; Di H; He Y; Xu J
    Environ Pollut; 2012 Feb; 161():121-7. PubMed ID: 22230076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate and behaviour of phenanthrene in the natural and artificial soils.
    Hofman J; Rhodes A; Semple KT
    Environ Pollut; 2008 Mar; 152(2):468-75. PubMed ID: 17850942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between cyclodextrin extraction and biodegradation of phenanthrene in soil.
    Rhodes AH; Dew NM; Semple KT
    Environ Toxicol Chem; 2008 Jul; 27(7):1488-95. PubMed ID: 18260689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of [3-(14)C]phenyldodecane biodegradation in cable insulating oil-spiked soil using selected extraction techniques.
    Dew NM; Paton GI; Semple KT
    Environ Pollut; 2005 Nov; 138(2):316-23. PubMed ID: 15949878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioavailability and degradation of phenanthrene in compost amended soils.
    Puglisi E; Cappa F; Fragoulis G; Trevisan M; Del Re AA
    Chemosphere; 2007 Mar; 67(3):548-56. PubMed ID: 17125813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of biochar on the bioaccessibility of (14)C-phenanthrene in aged soil.
    Ogbonnaya OU; Adebisi OO; Semple KT
    Environ Sci Process Impacts; 2014 Nov; 16(11):2635-43. PubMed ID: 25277257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of hydroxypropyl-beta-cyclodextrin on the extraction and biodegradation of phenanthrene in soil.
    Reid BJ; Stokes JD; Jones KC; Semple KT
    Environ Toxicol Chem; 2004 Mar; 23(3):550-6. PubMed ID: 15285345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of carbon nanomaterials on the development of phenanthrene catabolism in soil.
    Oyelami AO; Semple KT
    Environ Sci Process Impacts; 2015 Jul; 17(7):1302-10. PubMed ID: 26067741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost.
    Marchal G; Smith KE; Rein A; Winding A; Trapp S; Karlson UG
    Chemosphere; 2013 Feb; 90(6):1767-78. PubMed ID: 22921652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of pentachlorophenol in contaminated soil suspensions by potassium monopersulfate catalyzed oxidation by a supramolecular complex between tetra(p-sulfophenyl)porphineiron(III) and hydroxypropyl-beta-cyclodextrin.
    Fukushima M; Tatsumi K
    J Hazard Mater; 2007 Jun; 144(1-2):222-8. PubMed ID: 17101215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant enhanced degradation of phenanthrene in the contaminated soil.
    Liao M; Xie XM
    J Environ Sci (China); 2006; 18(3):510-3. PubMed ID: 17294648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta-cyclodextrin enhanced phytoremediation of aged PCBs-contaminated soil from e-waste recycling area.
    Chen Y; Tang X; Cheema SA; Liu W; Shen C
    J Environ Monit; 2010 Jul; 12(7):1482-9. PubMed ID: 20523947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.