BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 19501437)

  • 21. The biodegradation of cable oil components: impact of oil concentration, nutrient addition and bioaugmentation.
    Towell MG; Paton GI; Semple KT
    Environ Pollut; 2011 Dec; 159(12):3777-83. PubMed ID: 21872976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of bacterial and fungal processes on 14C-hexadecane mineralisation in weathered hydrocarbon contaminated soil.
    Adetutu EM; Ball AS; Weber J; Aleer S; Dandie CE; Juhasz AL
    Sci Total Environ; 2012 Jan; 414():585-91. PubMed ID: 22154183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of black carbon in the extraction and mineralization of phenanthrene in soil.
    Rhodes AH; Carlin A; Semple KT
    Environ Sci Technol; 2008 Feb; 42(3):740-5. PubMed ID: 18323096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of activated charcoal on desorption kinetics and biodegradation of phenanthrene in soil.
    Rhodes AH; Riding MJ; McAllister LE; Lee K; Semple KT
    Environ Sci Technol; 2012 Nov; 46(22):12445-51. PubMed ID: 23092507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of phenanthrene catabolism in natural and artificial soils.
    Rhodes AH; Hofman J; Semple KT
    Environ Pollut; 2008 Mar; 152(2):424-30. PubMed ID: 17881102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of carbon nanomaterials on the behaviour of 14C-phenanthrene and 14C-benzo-[a] pyrene in soil.
    Towell MG; Browne LA; Paton GI; Semple KT
    Environ Pollut; 2011 Mar; 159(3):706-15. PubMed ID: 21195517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction.
    Allan IJ; Semple KT; Hare R; Reid BJ
    Environ Pollut; 2006 Nov; 144(2):562-71. PubMed ID: 16545896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biogenic volatile organic compounds as a potential stimulator for organic contaminant degradation by soil microorganisms.
    McLoughlin E; Rhodes AH; Owen SM; Semple KT
    Environ Pollut; 2009 Jan; 157(1):86-94. PubMed ID: 18819735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodegradation of phenanthrene by the indigenous microbial biomass in a zinc amended soil.
    Wong KW; Toh BA; Ting YP; Obbard JP
    Lett Appl Microbiol; 2005; 40(1):50-5. PubMed ID: 15613002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradation of phenanthrene by indigenous microorganisms in soils from Livingstone Island, Antarctica.
    Okere UV; Cabrerizo A; Dachs J; Jones KC; Semple KT
    FEMS Microbiol Lett; 2012 Apr; 329(1):69-77. PubMed ID: 22268804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous phenanthrene and cadmium removal from contaminated soil by a ligand/biosurfactant solution.
    Lima TM; Procópio LC; Brandão FD; Carvalho AM; Tótola MR; Borges AC
    Biodegradation; 2011 Sep; 22(5):1007-15. PubMed ID: 21416334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradation of 2,4-dichlorophenol in the presence of volatile organic compounds in soils under different vegetation types.
    Rhodes AH; Owen SM; Semple KT
    FEMS Microbiol Lett; 2007 Apr; 269(2):323-30. PubMed ID: 17391503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using supercritical fluid extraction to measure the desorption and bioaccessibility of phenanthrene in soils.
    Stroud JL; Rhodes AH; Semple KT; Simek Z; Hofman J
    Environ Pollut; 2008 Dec; 156(3):664-70. PubMed ID: 18653263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cysteine-β-cyclodextrin enhanced phytoremediation of soil co-contaminated with phenanthrene and lead.
    Wang G; Wang Y; Hu S; Deng N; Wu F
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):10107-15. PubMed ID: 25687612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The variability of standard artificial soils: behaviour, extractability and bioavailability of organic pollutants.
    Hofman J; Hovorková I; Semple KT
    J Hazard Mater; 2014 Jan; 264():514-20. PubMed ID: 24239257
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time-dependent sorption of norflurazon in four different soils: use of beta-cyclodextrin solutions for remediation of pesticide-contaminated soils.
    Villaverde J
    J Hazard Mater; 2007 Apr; 142(1-2):184-90. PubMed ID: 16973265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil.
    Oyelami AO; Okere UV; Orwin KH; De Deyn GB; Jones KC; Semple KT
    Environ Pollut; 2013 Feb; 173():231-7. PubMed ID: 23202655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils.
    Badr T; Hanna K; de Brauer C
    J Hazard Mater; 2004 Aug; 112(3):215-23. PubMed ID: 15302442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil.
    García Frutos FJ; Escolano O; García S; Babín M; Fernández MD
    J Hazard Mater; 2010 Nov; 183(1-3):806-13. PubMed ID: 20800967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of microbial community during bioremediation of phenanthrene and chromium(VI)-contaminated soil microcosms.
    Ibarrolaza A; Coppotelli BM; Del Panno MT; Donati ER; Morelli IS
    Biodegradation; 2009 Feb; 20(1):95-107. PubMed ID: 18604587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.