These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 19501438)
1. As-resistance in laboratory-reared F1, F2 and F3 generation offspring of the earthworm Lumbricus rubellus inhabiting an As-contaminated mine soil. Langdon CJ; Morgan AJ; Charnock JM; Semple KT; Lowe CN Environ Pollut; 2009 Nov; 157(11):3114-9. PubMed ID: 19501438 [TBL] [Abstract][Full Text] [Related]
2. Inherited resistance to arsenate toxicity in two populations of Lumbricus rubellus. Langdon CJ; Piearce TG; Meharg AA; Semple KT Environ Toxicol Chem; 2003 Oct; 22(10):2344-8. PubMed ID: 14551998 [TBL] [Abstract][Full Text] [Related]
3. Arsenic-speciation in arsenate-resistant and non-resistant populations of the earthworm, Lumbricus rubellus. Langdon CJ; Meharg AA; Feldmann J; Balgar T; Charnock J; Farquhar M; Piearce TG; Semple KT; Cotter-Howells J J Environ Monit; 2002 Aug; 4(4):603-8. PubMed ID: 12196009 [TBL] [Abstract][Full Text] [Related]
4. A Cu tolerant population of the earthworm Dendrodrilus rubidus (Savigny, 1862) at Coniston Copper Mines, Cumbria, UK. Arnold RE; Hodson ME; Langdon CJ Environ Pollut; 2008 Apr; 152(3):713-22. PubMed ID: 17707108 [TBL] [Abstract][Full Text] [Related]
5. Resistance to copper toxicity in populations of the earthworms Lumbricus rubellus and Dendrodrilus rubidus from contaminated mine wastes. Langdon CJ; Piearce TG; Meharg AA; Semple KT Environ Toxicol Chem; 2001 Oct; 20(10):2336-41. PubMed ID: 11596768 [TBL] [Abstract][Full Text] [Related]
6. Arsenic speciation in the earthworms Lumbricus rubellus and Dendrodrilus rubidus. Langdon CJ; Piearce TG; Feldmann J; Semple KT; Meharg AA Environ Toxicol Chem; 2003 Jun; 22(6):1302-8. PubMed ID: 12785588 [TBL] [Abstract][Full Text] [Related]
7. Avoidance of Cu- and Zn-contaminated soil by three ecologically different earthworm species. Lukkari T; Haimi J Ecotoxicol Environ Saf; 2005 Sep; 62(1):35-41. PubMed ID: 15978289 [TBL] [Abstract][Full Text] [Related]
8. DNA damage in earthworms from highly contaminated soils: assessing resistance to arsenic toxicity by use of the Comet assay. Button M; Jenkin GR; Bowman KJ; Harrington CF; Brewer TS; Jones GD; Watts MJ Mutat Res; 2010 Feb; 696(2):95-100. PubMed ID: 20015476 [TBL] [Abstract][Full Text] [Related]
9. Arsenic biotransformation in earthworms from contaminated soils. Button M; Jenkin GR; Harrington CF; Watts MJ J Environ Monit; 2009 Aug; 11(8):1484-91. PubMed ID: 19657532 [TBL] [Abstract][Full Text] [Related]
10. Toxicological and biochemical responses of the earthworm Lumbricus rubellus to pyrene, a non-carcinogenic polycyclic aromatic hydrocarbon. Brown PJ; Long SM; Spurgeon DJ; Svendsen C; Hankard PK Chemosphere; 2004 Dec; 57(11):1675-81. PubMed ID: 15519413 [TBL] [Abstract][Full Text] [Related]
11. Population level consequences of toxicological influences on individual growth and reproduction in Lumbricus rubellus (Lumbricidae, Oligochaeta). Klok C; de Roos AM Ecotoxicol Environ Saf; 1996 Mar; 33(2):118-27. PubMed ID: 8723748 [TBL] [Abstract][Full Text] [Related]
12. Effect of time and mode of depuration on tissue copper concentrations of the earthworms Eisenia andrei, Lumbricus rubellus and Lumbricus terrestris. Arnold RE; Hodson ME Environ Pollut; 2007 Jul; 148(1):21-30. PubMed ID: 17254685 [TBL] [Abstract][Full Text] [Related]
13. Quantitative arsenic speciation in two species of earthworms from a former mine site. Watts MJ; Button M; Brewer TS; Jenkin GR; Harrington CF J Environ Monit; 2008 Jun; 10(6):753-9. PubMed ID: 18528543 [TBL] [Abstract][Full Text] [Related]
14. Cu accumulation in Lumbricus rubellus under laboratory conditions compared with accumulation under field conditions. Marinussen MP; Van der Zee SE; de Haan FA Ecotoxicol Environ Saf; 1997 Feb; 36(1):17-26. PubMed ID: 9056396 [TBL] [Abstract][Full Text] [Related]
15. Growth and reproduction of the earthworm Eisenia fetida after exposure to leachate from wood preservatives. Leduc F; Whalen JK; Sunahara GI Ecotoxicol Environ Saf; 2008 Feb; 69(2):219-26. PubMed ID: 17559932 [TBL] [Abstract][Full Text] [Related]
16. Assessment of a 2,4,6-trinitrotoluene-contaminated site using Aporrectodea rosea and Eisenia andrei in mesocosms. Robidoux PY; Svendsen C; Sarrazin M; Thiboutot S; Ampleman G; Hawari J; Weeks JM; Sunahara GI Arch Environ Contam Toxicol; 2005 Jan; 48(1):56-67. PubMed ID: 15657806 [TBL] [Abstract][Full Text] [Related]
17. Genotoxic and reproductive effects of an industrially contaminated soil on the earthworm Eisenia fetida. Bonnard M; Eom IC; Morel JL; Vasseur P Environ Mol Mutagen; 2009 Jan; 50(1):60-7. PubMed ID: 19031410 [TBL] [Abstract][Full Text] [Related]
18. Population growth and development of the earthworm Lumbricus rubellus in a polluted field soil: possible consequences for the godwit (Limosa limosa). Klok C; van der Hout A; Bodt J Environ Toxicol Chem; 2006 Jan; 25(1):213-9. PubMed ID: 16494244 [TBL] [Abstract][Full Text] [Related]
19. Genetic variation in populations of the earthworm, Lumbricus rubellus, across contaminated mine sites. Anderson C; Cunha L; Sechi P; Kille P; Spurgeon D BMC Genet; 2017 Nov; 18(1):97. PubMed ID: 29149838 [TBL] [Abstract][Full Text] [Related]
20. Growth and reproduction of earthworms in ultramafic soils. Maleri R; Reinecke SA; Mesjasz-Przybylowicz J; Reinecke AJ Arch Environ Contam Toxicol; 2007 Apr; 52(3):363-70. PubMed ID: 17354041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]