These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 19501601)

  • 21. From Lévy to Brownian: a computational model based on biological fluctuation.
    Nurzaman SG; Matsumoto Y; Nakamura Y; Shirai K; Koizumi S; Ishiguro H
    PLoS One; 2011 Feb; 6(2):e16168. PubMed ID: 21304911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficiency evaluation of two competing foraging modes under different conditions.
    Scharf I; Nulman E; Ovadia O; Bouskila A
    Am Nat; 2006 Sep; 168(3):350-7. PubMed ID: 16947110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lévy Walks Suboptimal under Predation Risk.
    Abe MS; Shimada M
    PLoS Comput Biol; 2015 Nov; 11(11):e1004601. PubMed ID: 26544687
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What happens when predators do not completely consume their prey?
    Mittler J
    Theor Popul Biol; 1997 Jun; 51(3):238-51. PubMed ID: 9245778
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Minimizing errors in identifying Lévy flight behaviour of organisms.
    Sims DW; Righton D; Pitchford JW
    J Anim Ecol; 2007 Mar; 76(2):222-9. PubMed ID: 17302829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reciprocal phenotypic plasticity can lead to stable predator-prey interaction.
    Mougi A; Kishida O
    J Anim Ecol; 2009 Nov; 78(6):1172-81. PubMed ID: 19622080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Turn costs change the value of animal search paths.
    Wilson RP; Griffiths IW; Legg PA; Friswell MI; Bidder OR; Halsey LG; Lambertucci SA; Shepard EL
    Ecol Lett; 2013 Sep; 16(9):1145-50. PubMed ID: 23848530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of handling time can destroy the coexistence of cycling predators.
    Kisdi E; Liu S
    J Evol Biol; 2006 Jan; 19(1):49-58. PubMed ID: 16405576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The positive effects of negative interactions: can avoidance of competitors or predators increase resource sampling by prey?
    Bell AV; Rader RB; Peck SL; Sih A
    Theor Popul Biol; 2009 Aug; 76(1):52-8. PubMed ID: 19371755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Explicit model for searching behavior of predator].
    Tiutiunov IuV; Sapukhina NIu; Senina IN; Arditi R
    Zh Obshch Biol; 2002; 63(2):137-48. PubMed ID: 11966215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predator-prey size relationships in an African large-mammal food web.
    Owen-Smith N; Mills MG
    J Anim Ecol; 2008 Jan; 77(1):173-83. PubMed ID: 18177336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimizing the encounter rate in biological interactions: Lévy versus Brownian strategies.
    Bartumeus F; Catalan J; Fulco UL; Lyra ML; Viswanathan GM
    Phys Rev Lett; 2002 Mar; 88(9):097901. PubMed ID: 11864054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of predator density dependent dispersal of prey on stability of a predator-prey system.
    Mchich R; Auger P; Poggiale JC
    Math Biosci; 2007 Apr; 206(2):343-56. PubMed ID: 16455112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimizing the encounter rate in biological interactions: Ballistic versus Lévy versus Brownian strategies.
    James A; Plank MJ; Brown R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051128. PubMed ID: 19113116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmental context explains Lévy and Brownian movement patterns of marine predators.
    Humphries NE; Queiroz N; Dyer JR; Pade NG; Musyl MK; Schaefer KM; Fuller DW; Brunnschweiler JM; Doyle TK; Houghton JD; Hays GC; Jones CS; Noble LR; Wearmouth VJ; Southall EJ; Sims DW
    Nature; 2010 Jun; 465(7301):1066-9. PubMed ID: 20531470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scale-invariant movements of fishermen: the same foraging strategy as natural predators.
    Bertrand S; Bertrand A; Guevara-Carrasco R; Gerlotto F
    Ecol Appl; 2007 Mar; 17(2):331-7. PubMed ID: 17489242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Local spatial structure and predator-prey dynamics: counterintuitive effects of prey enrichment.
    Murrell DJ
    Am Nat; 2005 Sep; 166(3):354-67. PubMed ID: 16224690
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of prey density on predators: conspicuousness and attack success are sensitive to spatial scale.
    Ioannou CC; Morrell LJ; Ruxton GD; Krause J
    Am Nat; 2009 Apr; 173(4):499-506. PubMed ID: 19231967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prey persistence and abundance in systems with intraguild predation and type-2 functional responses.
    Abrams PA; Fung SR
    J Theor Biol; 2010 Jun; 264(3):1033-42. PubMed ID: 20223250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rationalizing spatial exploration patterns of wild animals and humans through a temporal discounting framework.
    Namboodiri VM; Levy JM; Mihalas S; Sims DW; Hussain Shuler MG
    Proc Natl Acad Sci U S A; 2016 Aug; 113(31):8747-52. PubMed ID: 27385831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.