These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 19502004)

  • 1. Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain-computer interface algorithms.
    Chase SM; Schwartz AB; Kass RE
    Neural Netw; 2009 Nov; 22(9):1203-13. PubMed ID: 19502004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of brain-computer interface decoding algorithms in open-loop and closed-loop control.
    Koyama S; Chase SM; Whitford AS; Velliste M; Schwartz AB; Kass RE
    J Comput Neurosci; 2010 Aug; 29(1-2):73-87. PubMed ID: 19904595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring time-scales of closed-loop decoder adaptation in brain-machine interfaces.
    Orsborn AL; Dangi S; Moorman HG; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5436-9. PubMed ID: 22255567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Closed-loop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions.
    Orsborn AL; Dangi S; Moorman HG; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):468-77. PubMed ID: 22772374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering.
    Shanechi MM; Orsborn AL; Carmena JM
    PLoS Comput Biol; 2016 Apr; 12(4):e1004730. PubMed ID: 27035820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameter estimation for maximizing controllability of linear brain-machine interfaces.
    Gowda S; Orsborn AL; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1314-7. PubMed ID: 23366140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous closed-loop decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acquisition in brain-machine interfaces.
    Dangi S; Gowda S; Moorman HG; Orsborn AL; So K; Shanechi M; Carmena JM
    Neural Comput; 2014 Sep; 26(9):1811-39. PubMed ID: 24922501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive decoding for brain-machine interfaces through Bayesian parameter updates.
    Li Z; O'Doherty JE; Lebedev MA; Nicolelis MA
    Neural Comput; 2011 Dec; 23(12):3162-204. PubMed ID: 21919788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A recurrent neural network for closed-loop intracortical brain-machine interface decoders.
    Sussillo D; Nuyujukian P; Fan JM; Kao JC; Stavisky SD; Ryu S; Shenoy K
    J Neural Eng; 2012 Apr; 9(2):026027. PubMed ID: 22427488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance brain-machine interface enabled by an adaptive optimal feedback-controlled point process decoder.
    Shanechi MM; Orsborn A; Moorman H; Gowda S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6493-6. PubMed ID: 25571483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving brain-machine interface performance by decoding intended future movements.
    Willett FR; Suminski AJ; Fagg AH; Hatsopoulos NG
    J Neural Eng; 2013 Apr; 10(2):026011. PubMed ID: 23428966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces.
    Dangi S; Orsborn AL; Moorman HG; Carmena JM
    Neural Comput; 2013 Jul; 25(7):1693-731. PubMed ID: 23607558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of a brain-computer interface without spike sorting.
    Fraser GW; Chase SM; Whitford A; Schwartz AB
    J Neural Eng; 2009 Oct; 6(5):055004. PubMed ID: 19721186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for estimating neural firing rates, and their application to brain-machine interfaces.
    Cunningham JP; Gilja V; Ryu SI; Shenoy KV
    Neural Netw; 2009 Nov; 22(9):1235-46. PubMed ID: 19349143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robustness of neuroprosthetic decoding algorithms.
    Serruya M; Hatsopoulos N; Fellows M; Paninski L; Donoghue J
    Biol Cybern; 2003 Mar; 88(3):219-28. PubMed ID: 12647229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feedback control policies employed by people using intracortical brain-computer interfaces.
    Willett FR; Pandarinath C; Jarosiewicz B; Murphy BA; Memberg WD; Blabe CH; Saab J; Walter BL; Sweet JA; Miller JP; Henderson JM; Shenoy KV; Simeral JD; Hochberg LR; Kirsch RF; Ajiboye AB
    J Neural Eng; 2017 Feb; 14(1):016001. PubMed ID: 27900953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia.
    Kim SP; Simeral JD; Hochberg LR; Donoghue JP; Friehs GM; Black MJ
    IEEE Trans Neural Syst Rehabil Eng; 2011 Apr; 19(2):193-203. PubMed ID: 21278024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces.
    Cunningham JP; Nuyujukian P; Gilja V; Chestek CA; Ryu SI; Shenoy KV
    J Neurophysiol; 2011 Apr; 105(4):1932-49. PubMed ID: 20943945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor cortical decoding performance depends on controlled system order.
    Matlack C; Haddock A; Moritz CT; Chizeck HJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2553-6. PubMed ID: 25570511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards closed-loop decoding of dexterous hand movements using a virtual integration environment.
    Aggarwal V; Singhal G; He J; Schieber MH; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1703-6. PubMed ID: 19163007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.