These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 19502046)

  • 21. Screening for cellulases with industrial value and their use in biomass conversion.
    Jüergensen J; Ilmberger N; Streit WR
    Methods Mol Biol; 2012; 834():1-16. PubMed ID: 22144349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts.
    Ou MS; Mohammed N; Ingram LO; Shanmugam KT
    Appl Biochem Biotechnol; 2009 May; 155(1-3):379-85. PubMed ID: 19156365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates.
    Martins LF; Kolling D; Camassola M; Dillon AJ; Ramos LP
    Bioresour Technol; 2008 Mar; 99(5):1417-24. PubMed ID: 17408952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes.
    Mingardon F; Chanal A; López-Contreras AM; Dray C; Bayer EA; Fierobe HP
    Appl Environ Microbiol; 2007 Jun; 73(12):3822-32. PubMed ID: 17468286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications of computational science for understanding enzymatic deconstruction of cellulose.
    Beckham GT; Bomble YJ; Bayer EA; Himmel ME; Crowley MF
    Curr Opin Biotechnol; 2011 Apr; 22(2):231-8. PubMed ID: 21168322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toxic misfolding of Arabidopsis cellulases in the secretory pathway of Pichia pastoris.
    Tawde MD; Freimuth P
    Protein Expr Purif; 2012 Oct; 85(2):211-7. PubMed ID: 22929090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The rosettazyme: a synthetic cellulosome.
    Mitsuzawa S; Kagawa H; Li Y; Chan SL; Paavola CD; Trent JD
    J Biotechnol; 2009 Aug; 143(2):139-44. PubMed ID: 19559062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A proteomics strategy to discover beta-glucosidases from Aspergillus fumigatus with two-dimensional page in-gel activity assay and tandem mass spectrometry.
    Kim KH; Brown KM; Harris PV; Langston JA; Cherry JR
    J Proteome Res; 2007 Dec; 6(12):4749-57. PubMed ID: 18020405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein engineering for bioenergy and biomass-based chemicals.
    Clarke ND
    Curr Opin Struct Biol; 2010 Aug; 20(4):527-32. PubMed ID: 20591648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Approaches for improving thermostability characteristics in cellulases.
    Anbar M; Bayer EA
    Methods Enzymol; 2012; 510():261-71. PubMed ID: 22608731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations.
    Berlin A; Balakshin M; Gilkes N; Kadla J; Maximenko V; Kubo S; Saddler J
    J Biotechnol; 2006 Sep; 125(2):198-209. PubMed ID: 16621087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass.
    Zheng Y; Pan Z; Zhang R; Jenkins BM
    Biotechnol Bioeng; 2009 Apr; 102(6):1558-69. PubMed ID: 19061240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of active center in hyperthermophilic cellulase from Pyrococcus horikoshii.
    Kang HJ; Ishikawa K
    J Microbiol Biotechnol; 2007 Aug; 17(8):1249-53. PubMed ID: 18051592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [New cellulases efficiently hydrolyzing lignocellulose pulp].
    Skomarovskiĭ AA; Markov AV; Gusakov AV; Kondrat'eva EG; Okunev ON; Bekkerevich AO; Matys VIu; Sinitsyn AP
    Prikl Biokhim Mikrobiol; 2006; 42(6):674-80. PubMed ID: 17168296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion.
    Várnai A; Mäkelä MR; Djajadi DT; Rahikainen J; Hatakka A; Viikari L
    Adv Appl Microbiol; 2014; 88():103-65. PubMed ID: 24767427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stachybotrys atra BP-A produces alkali-resistant and thermostable cellulases.
    Picart P; Diaz P; Pastor FI
    Antonie Van Leeuwenhoek; 2008 Aug; 94(2):307-16. PubMed ID: 18454347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of novel biomass-degrading enzymes from genomic dark matter: Populating genomic sequence space with functional annotation.
    Piao H; Froula J; Du C; Kim TW; Hawley ER; Bauer S; Wang Z; Ivanova N; Clark DS; Klenk HP; Hess M
    Biotechnol Bioeng; 2014 Aug; 111(8):1550-65. PubMed ID: 24728961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms.
    Garvey M; Klose H; Fischer R; Lambertz C; Commandeur U
    Trends Biotechnol; 2013 Oct; 31(10):581-93. PubMed ID: 23910542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14.
    Zhou J; Wang YH; Chu J; Zhuang YP; Zhang SL; Yin P
    Bioresour Technol; 2008 Oct; 99(15):6826-33. PubMed ID: 18331790
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger.
    Amaike Campen S; Lynn J; Sibert SJ; Srikrishnan S; Phatale P; Feldman T; Guenther JM; Hiras J; Tran YTA; Singer SW; Adams PD; Sale KL; Simmons BA; Baker SE; Magnuson JK; Gladden JM
    PLoS One; 2017; 12(12):e0189604. PubMed ID: 29281693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.