BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19502557)

  • 1. Peculiar flow patterns of RBCs suspended in viscous fluids and perfused through a narrow tube (25 microm).
    Sakai H; Sato A; Okuda N; Takeoka S; Maeda N; Tsuchida E
    Am J Physiol Heart Circ Physiol; 2009 Aug; 297(2):H583-9. PubMed ID: 19502557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow behavior of neonatal and adult erythrocytes in narrow capillaries.
    Stadler A; Linderkamp O
    Microvasc Res; 1989 May; 37(3):267-79. PubMed ID: 2733599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions.
    Lanotte L; Mauer J; Mendez S; Fedosov DA; Fromental JM; Claveria V; Nicoud F; Gompper G; Abkarian M
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):13289-13294. PubMed ID: 27834220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of erythrocyte flexibility on microvascular perfusion and oxygenation during acute anemia.
    Cabrales P
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1206-15. PubMed ID: 17449555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow behavior of fetal, neonatal and adult RBCs in narrow (3-6 μm) capillaries--Calculation and experimental application.
    Ruef P; Stadler AA; Poeschl J
    Clin Hemorheol Microcirc; 2014; 58(2):317-31. PubMed ID: 23313873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evaluation of mechanical and electrical properties of RBC suspensions in Dextran and PEG under flow II. Role of RBC deformability and morphology.
    Antonova N; Riha P; Ivanov I; Gluhcheva Y
    Clin Hemorheol Microcirc; 2011; 49(1-4):441-50. PubMed ID: 22214715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-sectional distributions of normal and abnormal red blood cells in capillary tubes determined by a new technique.
    Sasaki T; Seki J; Itano T; Sugihara-Seki M
    Biorheology; 2018; 54(5-6):153-165. PubMed ID: 29614620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A methodology to study the deformability of red blood cells flowing in microcapillaries in vitro.
    Tomaiuolo G; Preziosi V; Simeone M; Guido S; Ciancia R; Martinelli V; Rinaldi C; Rotoli B
    Ann Ist Super Sanita; 2007; 43(2):186-92. PubMed ID: 17634668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation.
    Mchedlishvili G
    Clin Hemorheol Microcirc; 1998 Dec; 19(4):315-25. PubMed ID: 9972669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow.
    Hashemi Z; Rahnama M
    Int J Numer Method Biomed Eng; 2016 Nov; 32(11):. PubMed ID: 26729644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks.
    Balogh P; Bagchi P
    Physiol Rep; 2019 May; 7(9):e14067. PubMed ID: 31062494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry.
    Lima R; Ishikawa T; Imai Y; Takeda M; Wada S; Yamaguchi T
    J Biomech; 2008 Jul; 41(10):2188-96. PubMed ID: 18589429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood cell distribution in small and large vessels: Effects of wall and rotating motion of red blood cells.
    Tsubota KI; Namioka K
    J Biomech; 2022 May; 137():111081. PubMed ID: 35472709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells.
    Pan W; Fedosov DA; Caswell B; Karniadakis GE
    Microvasc Res; 2011 Sep; 82(2):163-70. PubMed ID: 21640731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide generation by endothelial cells exposed to shear stress in glass tubes perfused with red blood cell suspensions: role of aggregation.
    Yalcin O; Ulker P; Yavuzer U; Meiselman HJ; Baskurt OK
    Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2098-105. PubMed ID: 18326799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.