BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 19503084)

  • 1. NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation.
    Brennan AM; Suh SW; Won SJ; Narasimhan P; Kauppinen TM; Lee H; Edling Y; Chan PH; Swanson RA
    Nat Neurosci; 2009 Jul; 12(7):857-63. PubMed ID: 19503084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoinositide 3-kinase couples NMDA receptors to superoxide release in excitotoxic neuronal death.
    Brennan-Minnella AM; Shen Y; El-Benna J; Swanson RA
    Cell Death Dis; 2013 Apr; 4(4):e580. PubMed ID: 23559014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular pH reduction prevents excitotoxic and ischemic neuronal death by inhibiting NADPH oxidase.
    Lam TI; Brennan-Minnella AM; Won SJ; Shen Y; Hefner C; Shi Y; Sun D; Swanson RA
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):E4362-8. PubMed ID: 24163350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased NADPH oxidase-derived superoxide is involved in the neuronal cell death induced by hypoxia-ischemia in neonatal hippocampal slice cultures.
    Lu Q; Wainwright MS; Harris VA; Aggarwal S; Hou Y; Rau T; Poulsen DJ; Black SM
    Free Radic Biol Med; 2012 Sep; 53(5):1139-51. PubMed ID: 22728269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase.
    Suh SW; Gum ET; Hamby AM; Chan PH; Swanson RA
    J Clin Invest; 2007 Apr; 117(4):910-8. PubMed ID: 17404617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose and NADPH oxidase drive neuronal superoxide formation in stroke.
    Suh SW; Shin BS; Ma H; Van Hoecke M; Brennan AM; Yenari MA; Swanson RA
    Ann Neurol; 2008 Dec; 64(6):654-63. PubMed ID: 19107988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of neuronal NMDA receptors induces superoxide-mediated oxidative stress in neighboring neurons and astrocytes.
    Reyes RC; Brennan AM; Shen Y; Baldwin Y; Swanson RA
    J Neurosci; 2012 Sep; 32(37):12973-8. PubMed ID: 22973021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes.
    Wang S; Zhang M; Liang B; Xu J; Xie Z; Liu C; Viollet B; Yan D; Zou MH
    Circ Res; 2010 Apr; 106(6):1117-28. PubMed ID: 20167927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMDA receptor activation increases free radical production through nitric oxide and NOX2.
    Girouard H; Wang G; Gallo EF; Anrather J; Zhou P; Pickel VM; Iadecola C
    J Neurosci; 2009 Feb; 29(8):2545-52. PubMed ID: 19244529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons.
    Gao HM; Liu B; Hong JS
    J Neurosci; 2003 Jul; 23(15):6181-7. PubMed ID: 12867501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential release of nitric oxide, zinc, and superoxide in hypoglycemic neuronal death.
    Suh SW; Hamby AM; Gum ET; Shin BS; Won SJ; Sheline CT; Chan PH; Swanson RA
    J Cereb Blood Flow Metab; 2008 Oct; 28(10):1697-706. PubMed ID: 18545258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury.
    Zhang QG; Laird MD; Han D; Nguyen K; Scott E; Dong Y; Dhandapani KM; Brann DW
    PLoS One; 2012; 7(4):e34504. PubMed ID: 22485176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitotoxic superoxide production and neuronal death require both ionotropic and non-ionotropic NMDA receptor signaling.
    Minnella AM; Zhao JX; Jiang X; Jakobsen E; Lu F; Wu L; El-Benna J; Gray JA; Swanson RA
    Sci Rep; 2018 Nov; 8(1):17522. PubMed ID: 30504838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes.
    Noh KM; Koh JY
    J Neurosci; 2000 Dec; 20(23):RC111. PubMed ID: 11090611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADPH oxidase and enhanced superoxide generation in intrauterine undernourished rats: involvement of the renin-angiotensin system.
    Franco Mdo C; Akamine EH; Di Marco GS; Casarini DE; Fortes ZB; Tostes RC; Carvalho MH; Nigro D
    Cardiovasc Res; 2003 Sep; 59(3):767-75. PubMed ID: 14499878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidase inhibition prevents beta cell dysfunction induced by prolonged elevation of oleate in rodents.
    Koulajian K; Desai T; Liu GC; Ivovic A; Patterson JN; Tang C; El-Benna J; Joseph JW; Scholey JW; Giacca A
    Diabetologia; 2013 May; 56(5):1078-87. PubMed ID: 23429921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH oxidase inhibitor apocynin decreases mitochondrial dysfunction and apoptosis in the ventral cochlear nucleus of D-galactose-induced aging model in rats.
    Du ZD; Yu S; Qi Y; Qu TF; He L; Wei W; Liu K; Gong SS
    Neurochem Int; 2019 Mar; 124():31-40. PubMed ID: 30578839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tat-NR2B9c prevents excitotoxic neuronal superoxide production.
    Chen Y; Brennan-Minnella AM; Sheth S; El-Benna J; Swanson RA
    J Cereb Blood Flow Metab; 2015 May; 35(5):739-42. PubMed ID: 25669908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a functional leukocyte-type NADPH oxidase in human endothelial cells :a potential atherogenic source of reactive oxygen species.
    Meyer JW; Holland JA; Ziegler LM; Chang MM; Beebe G; Schmitt ME
    Endothelium; 1999; 7(1):11-22. PubMed ID: 10599557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inorganic arsenic activates reduced NADPH oxidase in human primary macrophages through a Rho kinase/p38 kinase pathway.
    Lemarie A; Bourdonnay E; Morzadec C; Fardel O; Vernhet L
    J Immunol; 2008 May; 180(9):6010-7. PubMed ID: 18424721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.