These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19503163)

  • 1. Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique.
    Lai ND; Liang WP; Lin JH; Hsu CC; Lin CH
    Opt Express; 2005 Nov; 13(23):9605-11. PubMed ID: 19503163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of two- and three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique.
    Lai ND; Lin JH; Huang YY; Hsu CC
    Opt Express; 2006 Oct; 14(22):10746-52. PubMed ID: 19529483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques.
    Lai ND; Liang W; Lin J; Hsu C
    Opt Express; 2005 Jul; 13(14):5331-7. PubMed ID: 19498526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of periodic nanovein structures by holography lithography technique.
    Lai ND; Huang YD; Lin JH; Do DB; Hsu CC
    Opt Express; 2009 Mar; 17(5):3362-9. PubMed ID: 19259173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of two-dimensional superposed microstructure by interference lithography.
    Lü H; Zhao QL; Zhang QY; Niu DJ; Wang X
    Appl Opt; 2012 Jan; 51(3):302-5. PubMed ID: 22270656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of ellipticity-controlled microlens arrays by controlling the parameters of the multiple-exposure two-beam interference technique.
    Do DB; Lai ND; Wu CY; Lin JH; Hsu CC
    Appl Opt; 2011 Feb; 50(4):579-85. PubMed ID: 21283250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of nano/micro dual-periodic structures by multi-beam evanescent wave interference lithography using spatial beats.
    Masui S; Torii Y; Michihata M; Takamasu K; Takahashi S
    Opt Express; 2019 Oct; 27(22):31522-31531. PubMed ID: 31684386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of highly rotational symmetric quasi-periodic structures by multiexposure of a three-beam interference technique.
    Lai ND; Lin JH; Hsu CC
    Appl Opt; 2007 Aug; 46(23):5645-8. PubMed ID: 17694111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of three-dimensional photonic crystals with two-beam holographic lithography.
    Liu Y; Liu S; Zhang X
    Appl Opt; 2006 Jan; 45(3):480-3. PubMed ID: 16463731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write.
    Pang L; Nakagawa W; Fainman Y
    Appl Opt; 2003 Sep; 42(27):5450-6. PubMed ID: 14526832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures.
    Burrow GM; Leibovici MC; Gaylord TK
    Appl Opt; 2012 Jun; 51(18):4028-41. PubMed ID: 22722277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-step multi-beam laser interference patterning of three-dimensional photonic lattices.
    Shoji S; Zaccaria R; Sun HB; Kawata S
    Opt Express; 2006 Mar; 14(6):2309-16. PubMed ID: 19503568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of microlens arrays based on the mass transport effect of SU-8 photoresist using a multiexposure two-beam interference technique.
    Wu CY; Chiang TH; Lai ND; Do DB; Hsu CC
    Appl Opt; 2009 May; 48(13):2473-9. PubMed ID: 19412205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of a two-dimensional photonic bandgap structure fabricated by an interferometric lithographic system.
    Chien CW; Lee YC; Lee PS; Chang JY; Chen JC
    Appl Opt; 2007 Jun; 46(16):3196-204. PubMed ID: 17514275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element.
    Lin Y; Harb A; Lozano K; Xu D; Chen KP
    Opt Express; 2009 Sep; 17(19):16625-31. PubMed ID: 19770878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-beam interference lithography methodology.
    Stay JL; Burrow GM; Gaylord TK
    Rev Sci Instrum; 2011 Feb; 82(2):023115. PubMed ID: 21361581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic-crystal waveguide structure by pattern-integrated interference lithography.
    Leibovici MC; Gaylord TK
    Opt Lett; 2015 Jun; 40(12):2806-9. PubMed ID: 26076267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and Characterization of 2D Nonlinear Structures Based on DAST Nanocrystals and SU-8 Photoresist for Terahertz Application.
    Pogosian T; Ledoux-Rak I; Denisyuk I; Fokina M; Lai ND
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays.
    Vala M; Homola J
    Opt Express; 2014 Jul; 22(15):18778-89. PubMed ID: 25089495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8.
    Misawa H; Kondo T; Juodkazis S; Mizeikis V; Matsuo S
    Opt Express; 2006 Aug; 14(17):7943-53. PubMed ID: 19529163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.