These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19503183)

  • 21. Brillouin gain bandwidth reduction in Brillouin optical time domain analyzers.
    Lin W; Yang Z; Hong X; Wang S; Wu J
    Opt Express; 2017 Apr; 25(7):7604-7615. PubMed ID: 28380880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling.
    Preussler S; Zadok A; Wiatrek A; Tur M; Schneider T
    Opt Express; 2012 Jun; 20(13):14734-45. PubMed ID: 22714534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superluminal propagation at negative group velocity in optical fibers based on Brillouin lasing oscillation.
    Zhang L; Zhan L; Qian K; Liu J; Shen Q; Hu X; Luo S
    Phys Rev Lett; 2011 Aug; 107(9):093903. PubMed ID: 21929244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frequency spacing switchable multiwavelength Brillouin erbium fiber laser utilizing cascaded Brillouin gain fibers.
    Wang X; Yang Y; Liu M; Yuan Y; Sun Y; Gu Y; Yao Y
    Appl Opt; 2016 Aug; 55(23):6475-9. PubMed ID: 27534498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Signal-to-noise ratio enhancement of stimulated Brillouin scattering based pulse compression of an ultrabroad microwave signal by use of a dispersion compensation fiber.
    Ji Y; Zou W; Long X; Chen J
    Opt Lett; 2017 Aug; 42(15):2980-2983. PubMed ID: 28957224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polarization-induced distortion in stimulated Brillouin scattering slow-light systems.
    Zadok A; Chin S; Thévenaz L; Zilka E; Eyal A; Tur M
    Opt Lett; 2009 Aug; 34(16):2530-2. PubMed ID: 19684839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superluminal propagation through 500 m optical fiber via stimulated Brillouin scattering.
    Zhang L; Zhan L; Qin M; Wang Z; Luo H; Wang T
    Opt Lett; 2015 Oct; 40(19):4404-7. PubMed ID: 26421542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel scanning method for distortion-free BOTDA measurements.
    Dominguez-Lopez A; Yang Z; Soto MA; Angulo-Vinuesa X; Martin-Lopez S; Thevenaz L; Gonzalez-Herraez M
    Opt Express; 2016 May; 24(10):10188-204. PubMed ID: 27409845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings.
    Lee H; Agrawal G
    Opt Express; 2003 Dec; 11(25):3467-72. PubMed ID: 19471480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering.
    Smith RG
    Appl Opt; 1972 Nov; 11(11):2489-94. PubMed ID: 20119362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brillouin optical time-domain analysis sensor with pump pulse amplification.
    Mompó JJ; Urricelqui J; Loayssa A
    Opt Express; 2016 Jun; 24(12):12672-81. PubMed ID: 27410288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-resolution long-range distributed Brillouin analysis using dual-layer phase and amplitude coding.
    London Y; Antman Y; Cohen R; Kimelfeld N; Levanon N; Zadok A
    Opt Express; 2014 Nov; 22(22):27144-58. PubMed ID: 25401865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finite element analysis of Brillouin gain in SBS-suppressing optical fibers with non-uniform acoustic velocity profiles.
    Ward B; Spring J
    Opt Express; 2009 Aug; 17(18):15685-99. PubMed ID: 19724568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental study of Brillouin scattering in fluorine-doped single-mode optical fibers.
    Zou W; He Z; Hotate K
    Opt Express; 2008 Nov; 16(23):18804-12. PubMed ID: 19581969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strain event detection using a double-pulse technique of a Brillouin scattering-based distributed optical fiber sensor.
    Cho SB; Lee JJ; Kwon IB
    Opt Express; 2004 Sep; 12(18):4339-46. PubMed ID: 19483982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly nonlinear yttrium-aluminosilicate optical fiber with a high intrinsic stimulated Brillouin scattering threshold.
    Tuggle M; Kucera C; Hawkins T; Sligh D; Runge AFJ; Peacock AC; Dragic P; Ballato J
    Opt Lett; 2017 Dec; 42(23):4849-4852. PubMed ID: 29216126
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Particle swarm optimization on threshold exponential gain of stimulated Brillouin scattering in single mode fibers.
    Al-Asadi HA; Al-Mansoori MH; Hitam S; Saripan MI; Mahdi MA
    Opt Express; 2011 Jan; 19(3):1842-53. PubMed ID: 21368999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber.
    Xu Y; Ren M; Lu Y; Lu P; Lu P; Bao X; Wang L; Messaddeq Y; LaRochelle S
    Opt Lett; 2016 Mar; 41(6):1138-41. PubMed ID: 26977653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis.
    Elooz D; Antman Y; Levanon N; Zadok A
    Opt Express; 2014 Mar; 22(6):6453-63. PubMed ID: 24663994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brillouin slow light: substantial optical delay in the second-order Brillouin gain spectrum.
    Gan GK; Shee YG; Yeo KS; Madhiraji GA; Adikan FR; Mahdi MA
    Opt Lett; 2014 Sep; 39(17):5118-21. PubMed ID: 25166088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.