These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19503323)

  • 1. Optical vortex metrology for nanometric speckle displacement measurement.
    Wang W; Yokozeki T; Ishijima R; Wada A; Miyamoto Y; Takeda M; Hanson SG
    Opt Express; 2006 Jan; 14(1):120-7. PubMed ID: 19503323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical vortex metrology based on the core structures of phase singularities in Laguerre-Gauss transform of a speckle pattern.
    Wang W; Yokozeki T; Ishijima R; Takeda M; Hanson SG
    Opt Express; 2006 Oct; 14(22):10195-206. PubMed ID: 19529415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of in-plane displacements using the phase singularities generated by directional wavelet transforms of speckle pattern images.
    Vadnjal AL; Etchepareborda P; Federico A; Kaufmann GH
    Appl Opt; 2013 Mar; 52(9):1805-13. PubMed ID: 23518721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PoincarĂ© sphere representation for the anisotropy of phase singularities and its applications to optical vortex metrology for fluid mechanical analysis.
    Wang W; Dennis MR; Ishijima R; Yokozeki T; Matsuda A; Hanson SG; Takeda M
    Opt Express; 2007 Aug; 15(17):11008-19. PubMed ID: 19547458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-plane displacement measurement in vortex metrology by synthetic network correlation fringes.
    Angel-Toro L; Sierra-Sosa D; Tebaldi M; Bolognini N
    J Opt Soc Am A Opt Image Sci Vis; 2013 Mar; 30(3):462-9. PubMed ID: 23456122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudophase information from the complex analytic signal of speckle fields and its applications. Part I: microdisplacement observation based on phase-only correlation in the signal domain.
    Wang W; Ishii N; Hanson SG; Miyamoto Y; Takeda M
    Appl Opt; 2005 Aug; 44(23):4909-15. PubMed ID: 16114528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constellation of phase singularities in a speckle-like pattern for optical vortex metrology applied to biological kinematic analysis.
    Wang W; Qiao Y; Ishijima R; Yokozeki T; Honda D; Matsuda A; Hanson SG; Takeda M
    Opt Express; 2008 Sep; 16(18):13908-17. PubMed ID: 18773002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vortex analysis in dynamic speckle images.
    Sendra GH; Rabal HJ; Arizaga R; Trivi M
    J Opt Soc Am A Opt Image Sci Vis; 2009 Dec; 26(12):2634-9. PubMed ID: 19956334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of nanometric displacements by correlating two speckle interferograms.
    Tendela LP; Galizzi GE; Federico A; Kaufmann GH
    Appl Opt; 2011 Apr; 50(12):1758-64. PubMed ID: 21509068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vortex metrology using Fourier analysis techniques: vortex networks correlation fringes.
    Angel-Toro L; Sierra-Sosa D; Tebaldi M; Bolognini N
    Appl Opt; 2012 Oct; 51(30):7411-9. PubMed ID: 23089799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical vortex behavior in dynamic speckle fields.
    Kirkpatrick SJ; Khaksari K; Thomas D; Duncan DD
    J Biomed Opt; 2012 May; 17(5):050504. PubMed ID: 22612119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speckle patterns produced by an optical vortex and its application to surface roughness measurements.
    Passos MH; Lemos MR; Almeida SR; Balthazar WF; da Silva L; Huguenin JA
    Appl Opt; 2017 Jan; 56(2):330-335. PubMed ID: 28085872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-plane displacement measurement using optical vortex phase shifting.
    Sun H; Wang X; Sun P
    Appl Opt; 2016 Jul; 55(21):5610-3. PubMed ID: 27463914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting nanometric displacements with optical ruler metrology.
    Yuan GH; Zheludev NI
    Science; 2019 May; 364(6442):771-775. PubMed ID: 31072905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-aided speckle interferometry using spectral amplitude fringes.
    Chen DJ; Chiang FP
    Appl Opt; 1993 Jan; 32(2):225-36. PubMed ID: 20802680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudophase information from the complex analytic signal of speckle fields and its applications. Part II: statistical properties of the analytic signal of a white-light speckle pattern applied to the microdisplacement measurement.
    Wang W; Ishii N; Hanson SG; Miyamoto Y; Takeda M
    Appl Opt; 2005 Aug; 44(23):4916-21. PubMed ID: 16114529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid optical-digital method for local-displacement analysis by use of a phase-space representation.
    Furlan WD; Saavedra G; Tajahuerce E
    Appl Opt; 1995 Aug; 34(22):4713-6. PubMed ID: 21052306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical model for speckle pattern optimization.
    Su Y; Zhang Q; Gao Z
    Opt Express; 2017 Nov; 25(24):30259-30275. PubMed ID: 29221057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis and design of an anamorphic optical processor for speckle metrology and velocimetry.
    Collicott SH; Hesselink L
    Appl Opt; 1992 Apr; 31(10):1646-59. PubMed ID: 20720801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential and vortex features of optical speckle fields and visualization of wave-front singularities.
    Aksenov V; Banakh V; Tikhomirova O
    Appl Opt; 1998 Jul; 37(21):4536-40. PubMed ID: 18285906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.